Time filter

Source Type

Hampton, VA, United States

The National Institute of Aerospace is a non-profit research and graduate education institute headquartered in Hampton, Virginia, near NASA's Langley Research Center. NIA's mission is to conduct leading-edge aerospace and atmospheric research, develop new technologies for the nation and help inspire the next generation of scientists and engineers.NIA was formed in 2002 by a consortium of research universities to ensure a national capability to support NASA's mission by expanding collaboration with academia and leveraging expertise inside and outside NASA. NIA performs research in a broad range of disciplines including space exploration, systems engineering, nanoscale materials science, flight systems, aerodynamics, air traffic management, aviation safety, planetary and space science, and global climate change.NIA is headed by Dr. Douglas O. Stanley, who was named interim to the post of president and executive director in July 2012. He succeeded Dr. Robert Lindberg, who became the first President and Executive Director in October 2003. Wikipedia.

Nishikawa H.,National Institute of Aerospace
Journal of Computational Physics | Year: 2014

In this paper, we present constructions of first-, second-, and third-order schemes for diffusion by the method introduced in Nishikawa (2007) [10]. In this method, numerical schemes for diffusion are constructed by advection schemes via an equivalent hyperbolic system. This paper demonstrates that the method enables straightforward constructions of diffusion schemes for finite-volume methods on unstructured grids. In particular, it is demonstrated that a robust first-order upwind scheme leads to a robust first-order diffusion scheme, and a high-order advection scheme leads to a high-order diffusion scheme. It is shown that first-, second-, and third-order schemes are capable of producing first-, second-, and third-order accurate solution gradients, respectively, on irregular grids. Accuracy, Fourier stability, and the energy stability of the developed schemes are discussed. A new hyperbolic diffusion system having virtually no source terms is also introduced to simplify the construction of the third-order scheme. Numerical results are presented for regular and irregular triangular grids to demonstrate not only the superior accuracy but also the accelerated steady convergence over a traditional method. © 2013 Elsevier Inc. Source

United States and National Institute of Aerospace | Date: 2013-08-24

A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with -conjugated conductive polymers, including polyaniline (PANI), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.

National Institute of Aerospace and United States | Date: 2014-05-16

A novel radiation hardened chip package technology protects microelectronic chips and systems in aviation/space or terrestrial devices against high energy radiation. The proposed technology of a radiation hardened chip package using rare earth elements and mulitlayered structure provides protection against radiation bombardment from alpha and beta particles to neutrons and high energy electromagnetic radiation.

National Institute of Aerospace and United States | Date: 2014-05-27

Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

U. S. A. As Represented By The Administrator Of The National Aeronautics And Space Administration and National Institute of Aerospace | Date: 2013-07-12

Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly--benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

Discover hidden collaborations