National Evolutionary Synthesis Center ent

Durham, NC, United States

National Evolutionary Synthesis Center ent

Durham, NC, United States
Time filter
Source Type

Auld J.R.,CNRS Center of Evolutionary and Functional Ecology | Auld J.R.,National Evolutionary Synthesis Center ent | Charmantier A.,CNRS Center of Evolutionary and Functional Ecology
Oikos | Year: 2011

Reproductive senescence, an intra-individual decline in reproductive function with age, is widespread, but proximate factors determining its rate remain largely unknown. Most studies of reproductive senescence focus on females, leaving senescence in male function and its implications for female function largely understudied. We constructed linear mixed models to explore the interactive effects of paternal and maternal age and a life-history trait (i.e. age at first reproduction) on four fitness components (i.e. laying date, clutch size, number of fledglings and number of recruits) measured in a wild, breeding population of blue tits Cyanistes caeruleus ogliastrae where individual breeding success has been followed for over 30 years (our dataset spanned 29 years). Previous studies have shown that, across female lifespan, laying date decreases and subsequently increases; earlier laying dates result in higher fitness because hatchlings have greater access to a seasonal food source. Our analyses reveal that females that initiate reproduction early in life show a greater delay in laying date with old age. In addition to delayed laying dates, older females lay smaller clutches. However, the magnitude of female age effects was influenced by the age at first reproduction of their breeding partners. Senescence of laying date and clutch size was reduced when females mated with males that reproduced early in life compared to males that delayed reproduction. We confirmed that both laying date and clutch size were significantly correlated with reproductive fitness suggesting that these dynamics early in the breeding cycle can have long-term consequences. These complex phenotypic interactions shed light on the proximate mechanisms underlying reproductive senescence in nature and highlight the potential importance of cross-sex age by life-history interactions. © 2011 The Authors. Oikos © 2011 Nordic Society Oikos.

Slater G.J.,University of California at Los Angeles | Price S.A.,National Evolutionary Synthesis Center ent | Price S.A.,University of California at Davis | Santini F.,University of California at Los Angeles | Alfaro M.E.,University of California at Los Angeles
Proceedings of the Royal Society B: Biological Sciences | Year: 2010

Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny. © 2010 The Royal Society.

Auld J.R.,University of Pittsburgh | Auld J.R.,National Evolutionary Synthesis Center ent
Evolution | Year: 2010

Environmental effects on mating system expression are central to understanding mating system evolution in nature. Here, I report the results from a quantitative-genetic experiment aimed at understanding the role of predation risk in the expression and evolution of life-history and mating-system traits in a hermaphroditic freshwater snail (Physa acuta). I reared 30 full-sib families in four environments that factorially contrast predation risk and mate availability and measured age/size at first reproduction, growth rate, a morphological defense, and the early survival of outcrossed/selfed eggs that were laid under predator/no-predator conditions. I evaluated the genetic basis of trade-offs among traits and the stability of the G matrix across environments. Mating reduced growth while predation risk increased growth, but the effects of mating were weaker for predator-induced snails and the effects of predation risk were weaker for snails without mates. Predation risk reduced the amount of time that individuals waited before self-fertilizing and reduced inbreeding depression in the offspring. There was a positive among-family relationship between the amount of time that individuals delayed selfing under predation risk and the magnitude of inbreeding depression. These results highlight several potential roles of enemies in mating-system expression and evolution. © 2010 The Author(s). Evolution © 2010 The Society for the Study of Evolution.

Auld J.R.,University of Pittsburgh | Auld J.R.,National Evolutionary Synthesis Center ent | Relyea R.A.,University of Pittsburgh
Evolutionary Ecology | Year: 2010

Environmental effects on the evolution of mating systems are increasingly discussed, but we lack many examples of how environmental conditions affect the expression and consequences of alternative mating systems. Variation in mate availability sets up a trade-off between reproductive assurance and inbreeding depression, but the consequences of both mate limitation and inbreeding may depend on other environmental conditions. Predation risk is common under natural conditions, and known to affect allocation to reproduction, but we know little about the effects of isolation and inbreeding under predation risk. We reared selfed and outcrossed hermaphroditic freshwater snails (Physa acuta) in four environments (predator cues present or absent crossed with mating partners available or not) and quantified life-history traits and cumulative lifetime fitness. Our results confirm that isolation from mates can increase longevity and growth, resulting in higher lifetime fecundity. Thus, we observed no evidence for mate limitation of reproduction. However, reproduction under isolation (i.e., selfing) resulted in inbreeding depression, which should counteract the benefits of selfing. Inbreeding depression in fitness occurred in both predator and no-predator environments, but there was no overall change in inbreeding depression with predator cues. This represents, to our knowledge, the first empirical estimate of the effect of predation risk on inbreeding depression in an animal. Cumulative fitness was most influenced by early survival and especially early fecundity. As predation risk and inbreeding (both ancestral and due to a lack of mates) reduced early fecundity, these effect are predicted to have important contributions to population growth under natural conditions. Therefore life-history plasticity (e.g., delayed reproduction) is likely to be very important to overall fitness. © 2010 Springer Science+Business Media B.V.

Auld J.R.,University of Pittsburgh | Auld J.R.,National Evolutionary Synthesis Center ent | Relyea R.A.,University of Pittsburgh
Evolutionary Ecology | Year: 2011

Studies of putatively adaptive plasticity, such as inducible defenses, frequently explore the fitness consequences of expressing alternative phenotypes in alternative environments, but few studies examine how and why the pattern of selection changes in relation to trait induction. We induced snails in the presence/absence of nonlethal predatory crayfish, exposed both phenotypes (alone and combined) to selection by lethal crayfish, and quantified linear and nonlinear selection differentials. Crayfish induced an increase in mass, shell thickness, and absolute (but not relative) shell dimensions. Crayfish predation on uninduced snails was rapid, accomplished via shell-crushing and revealed strong selection for increased size (i.e., mass and shell dimensions). Conversely, crayfish predation on predator-induced snails was slower, often accomplished using an alternative mode of predation (shell-crushing 70% of the time, but shell-extraction 30% of the time), and revealed selection for wide apertures and thick shells. Crayfish selection on uninduced snails in the presence of predator-induced snails was stronger than predation on uninduced snails alone demonstrating that selection can be frequency dependent. Therefore, predator-induced changes in size and shell thickness appear to be adaptive and, along with reciprocal adjustments in the mode of predation, result in altered patterns of selection. © 2010 Springer Science+Business Media B.V.

Gelfman S.,Tel Aviv University | Burstein D.,Tel Aviv University | Penn O.,Tel Aviv University | Savchenko A.,Tel Aviv University | And 6 more authors.
Genome Research | Year: 2012

Exon-intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon-intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. © 2012 by Cold Spring Harbor Laboratory Press.

Moczek A.P.,Indiana University | Moczek A.P.,National Evolutionary Synthesis Center ent
Integrative and Comparative Biology | Year: 2012

This essay has three parts. First, I posit that much research in contemporary evodevo remains steeped in a traditional framework that views traits and trait differences as being caused by genes and genetic variation, and the environment as providing an external context in which development and evolution unfold. Second, I discuss three attributes of organismal development and evolution, broadly applicable to all organisms and traits that call into question the usefulness of gene- and genome-centric views of development and evolution. I then focus on the third and main aim of this essay and ask: what conceptual and empirical opportunities exist that would permit evodevo research to transcend the traditional boundaries inherited from its parent disciplines and to move toward the development of a more comprehensive and realistic theory of developmental evolution? Here, I focus on three conceptual frameworks, the theory of facilitated variation, the theory of evolution by genetic accommodation, and the theory of niche construction. I conclude that combined they provide a rich, interlocking framework within which to revise existing and develop novel empirical approaches toward a better understanding of the nature of developmental evolution. Examples of such approaches are highlighted, and the consequences of expanding existing frameworks are discussed. © The Author 2012. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

Cruickshank T.,Indiana University | Cruickshank T.,National Evolutionary Synthesis Center ent | Wade M.J.,Indiana University
Integrative and Comparative Biology | Year: 2012

We report that females of the broad-horned flour beetle, Gnathocerus cornutus, can plastically adjust the sex ratio in their broods in response to environmental quality. Specifically, females reared in nutritionally poor environments produce broods that are 65 female, on average, with the degree of female-bias in some broods approaching 95. In addition, females reared in nutritionally poor environments lay significantly more eggs than do females reared on standard medium, which produce broods with an even sex ratio. These effects of the mother's environment on size and sex ratio in broods are manifest even when oviposition occurs in the standard nutritional environment; indeed, the degree of female-bias increases with advancing female age despite the availability of nutritional resources to females at the time of egg laying. Our studies rule out sex-specific differences in viability early in larval development as the mechanism for the bias in sex-ratio of broods, since females reared in nutritionally poor environments have broods with hatchability and larval viability comparable to those of nonstressed females. Our studies also rule out an effect of the sire on the sex ratio in broods, since all male mates were reared on standard medium. We discuss our results in the context of theories for the evolution of plastic sex-ratios in the face of environmental deterioration and discuss how plasticity can resolve a long-standing question about the conditions underlying the evolution of biased sex ratios. © The Author 2012. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

Payne J.L.,Stanford University | Heim N.A.,Stanford University | Knope M.L.,Stanford University | McClain C.R.,National Evolutionary Synthesis Center ent
Proceedings of the Royal Society B: Biological Sciences | Year: 2014

Brachiopods and bivalves feed in similar ways and have occupied the same environments through geological time, but brachiopods were far more diverse and abundant in the Palaeozoic whereas bivalves dominate the post-Palaeozoic, suggesting a transition in ecological dominance 250 Ma. However, diversity and abundance data alone may not adequately describe key changes in ecosystem function, such as metabolic activity. Here, we use newly compiled body size data for 6066 genera of bivalves and brachiopods to calculate metabolic rates and revisit this question from the perspective of energy use, finding that bivalves already accounted for a larger share of metabolic activity in Palaeozoic oceans. We also find that the metabolic activity of bivalves has increased by more than two orders of magnitude over this interval, whereas brachiopod metabolic activity has declined by more than 50%. Consequently, the increase in bivalve energy metabolism must have occurred via the acquisition of new food resources rather than through the displacement of brachiopods. The canonical view of a mid- Phanerozoic transition from brachiopod to bivalve dominance results from a focus on taxonomic diversity and numerical abundance as measures of ecological importance. From a metabolic perspective, the oceans have always belonged to the clams. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Meachen-Samuels J.,National Evolutionary Synthesis Center ent
Journal of Mammalian Evolution | Year: 2010

The cortical thickness of long bones can be an effective indicator of locomotor modes and other stresses encountered by bone. Felids and canids are two carnivoran families that have similar levels of phylogenetic diversity and overlap in body size, but differ in their locomotor habits. Many canids and felids are cursorial, but felids also climb more frequently than canids. Felids also display a secondary use for their forelimbs not observed in any canids: they use their forelimbs to grasp and subdue prey. Large felids use their forelimbs much more extensively to subdue prey than do large canids and, therefore, should have proportionately greater forces applied to their forelimbs. This study uses a non-invasive radiographic approach to examine the differences in cortical thickness in the humerus between the Felidae and Canidae, as well as between size groups within these two families. Results show few significant differences between the two families, with a slight trend toward more positive allometry in the felids. Overall, radiographic measurements were found to be better predictors of body mass than either prey killing behavior or locomotor mode in these two carnivoran families. One canid that demonstrated exceptionally high cortical area was the bush dog, Speothos venaticus. The rarely observed bush dog has been postulated to swim and dig regularly, and it may be that the thickened cortical bone reflects these behaviors. © 2010 Springer Science+Business Media, LLC.

Loading National Evolutionary Synthesis Center ent collaborators
Loading National Evolutionary Synthesis Center ent collaborators