Time filter

Source Type

Fujimori E.,National Environmental Research and Training Institute
Bunseki Kagaku | Year: 2016

In determining Cd in seawater samples at ng L−1 levels by ICP-MS, the polyatomic ion due to Mo causes severe spectral interference (MoO → Cd). In the present work, a separation method of Mo during chelating-resin solid-phase extraction (SPE) was thus examined. As a result, it was found that the addition of H2O2 to seawater samples (2%) was effective to remove Mo during chelating-resin SPE using chelating resin with imminodiacetate as a function group, while Cd could be recovered quantitatively. The recovery value and detection limit of Cd were 98.6±1.0% (n = 4)and 0.06 ng L−1, in the case that the seawater sample was concentrated 25 times by chelating-resin SPE with H2O2 addition. The feasibility of the present method was examined by analyzing seawater certified reference materials (NRCC SLEW-3 and NASS-5). The present method was applicable for the determination of Cd in coastal surface seawater around Okinawa (1.09 to 4.79 ng L−1) with good precision. © 2016 The Japan Society for Analytical Chemistry.


Watanabe N.,Osaka Institute of Technology | Takata M.,Osaka Institute of Technology | Takemine S.,National Environmental Research and Training Institute | Yamamoto K.,Japan Institute for Environmental Sciences
Environmental Science and Pollution Research | Year: 2015

Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage. © 2015 Springer-Verlag Berlin Heidelberg


PubMed | National Environmental Research and Training Institute, Osaka Institute of Technology and Japan Institute for Environmental Sciences
Type: | Journal: Environmental science and pollution research international | Year: 2015

Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N


Okuda T.,Keio University | Fujimori E.,Nagoya University | Fujimori E.,National Environmental Research and Training Institute | Hatoya K.,Keio University | And 9 more authors.
Aerosol and Air Quality Research | Year: 2013

It would be convenient if we could achieve multi-component (organic and inorganic species) analysis using just one quartz fiber filter (QFF) as an aerosol collection medium. In general, QFF have been used for analyzing carbonaceous materials in aerosols. This study shows a nondestructive, rapid, and simple method using EDXRF (Energy Dispersive X-Ray Fluorescence spectrometry) that has secondary targets and three-dimensional polarization optics for analyzing inorganic multi-elements in aerosols collected on QFFs. Multi-element analysis can be achieved by using EDXRF coupled with fundamental parameter (FP) quantification, as speed of up to 900 s (15 min) per sample. The EDXRF-FP method shows good repeatability, with generally less than 5% variation when measuring each analyzed element. While the elemental concentrations in the blank QFFs in any lots examined in this study could be considered to be lower than the actual samples, the blank level of Ni cannot be ignored. The EDXRF-FP results for each element of the aerosols collected on QFF agreed well with ICP-MS and ICP-AES results. The temporal variations of the selected elements in aerosols obtained by EDXRF-FP showed very good agreement with those obtained by ICP-MS and AES, and thus this method is suitable for elucidating day-to-day variations of multi-elements in aerosols. © Taiwan Association for Aerosol Research.


Fujita H.,Ehime University | Honda K.,Ehime University | Iwakiri R.,National Environmental Research and Training Institute | Guruge K.S.,Japanese National Institute of Animal Health | And 2 more authors.
Chemosphere | Year: 2012

In this study, we investigated the suppressive effect of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) transfer from the feed to the eggs of laying hens by using activated carbon as a feed additive. Four groups of six hens (White Leghorn egg-layers; age, 11weeks) were housed as two control groups and two exposure groups for a period of 20weeks. Two control groups were fed with either the basal feed " Control" or basal feed additing activated carbon " Control+C" Another two exposure groups were fed with feed contaminated (about 6ng TEQ kg -1 feed) by standard solutions of PCDDs/PCDFs and DL-PCBs " Exposure" alone and contaminated feed adding activated carbon " Exposure+C" There was no significant effect on each groups for the growth rate, biochemical blood components, and egg production: these were around the standard levels for poultry in general. Moreover the results in this study showed the availability of activated carbon as a feed additive owing to the reduction in the risk of food pollution by PCDDs/PCDFs and DL-PCBs. The concentration in the eggs of the Exposure group gradually increased following the start of egg-laying but reached a steady state after about 1month. In contrast, the concentration for the Exposure+C group was stationary and below the maximum EU level (6pgTEQg -1fat). In comparison to the Exposure group, the Exposure+C group showed a significant decline in the percentage of bioaccumulation into the egg. This reduction due to activated carbon was also observed in the muscle and abdominal fat. The reductions were compound- and congener-dependent for DL-PCBs as follows: PCDDs/PCDFs, non-ortho-PCBs, and mono-ortho-PCBs were more than 90%, 80%, and 50%, respectively, irrespective of the type of tissues. Fat soluble vitamin concentrations in the eggs of the Exposure+C group showed lower trends than the Exposure group. The γ-tocopherol and α-tocopherol concentrations in eggs of Exposure+C group showed a significant reduction of about 40%. However, the addition of activated carbon into animal feed could obviate the remote potential for accidents causing unintentional food pollution with PCDDs/PCDFs and DL-PCBs. © 2012.


Shinomiya M.,National Environmental Research and Training Institute
International Journal of Environmental Analytical Chemistry | Year: 2013

A multi-residue method using liquid chromatography coupled to triple quadrupole tandem mass spectrometry (LC-MS/MS), associated with solid-phase extraction (SPE), was developed for the determination of 21 pesticides in water samples. The compounds investigated are used for the maintenance of golf courses and ordinarily measured by gas chromatography-mass spectrometry (GC-MS). Electrospray ionisation (ESI) was applied to all compounds, and LC and MS conditions were optimised to measure them under SRM mode. This method showed excellent linearity ranges for all pesticides, with correlation coefficients greater than 0.996. Two kinds of extraction cartridges, namely, styrene divinylbenzene polymer (Sep-Pak PS-2) and divinylbenzene-N-vinylpyrrolidone copolymer (Oasis HLB), were tested and the extraction conditions were optimised. All the pesticides were determined using acetonitrile and ethyl acetate as eluents in both cartridges, and good recoveries (>77%) and repeatability with low relative standard deviations (RSDs, <12%) were achieved from ultra-pure water. In addition, satisfactory recoveries (>76%) and low intra-day and inter-day RSDs (<15%) of all pesticides were also obtained with the Sep-Pak PS-2 cartridge when using river water. The method limits of detection (LODs) ranged between 0.068 (diazinon) and 3.9 (triclopyrbutoxyethyl) ng L-1. The analytical method was successfully applied for the determination of pesticides in surface river water. © 2013 Copyright Taylor and Francis Group, LLC.

Loading National Environmental Research and Training Institute collaborators
Loading National Environmental Research and Training Institute collaborators