National Engineering Research Center for Tissues Restoration and Reconstruction

Guangzhou, China

National Engineering Research Center for Tissues Restoration and Reconstruction

Guangzhou, China

Time filter

Source Type

Mao C.,South China University of Technology | Mao C.,National Engineering Research Center for Tissues Restoration and Reconstruction | Chen X.,South China University of Technology | Chen X.,National Engineering Research Center for Tissues Restoration and Reconstruction | And 5 more authors.
Biomedical Materials (Bristol) | Year: 2015

The ability of biomaterials to induce rapid vascular formation is critical in tissue regeneration. Combining recombinant angiogenic growth factors with bioengineered constructs have proven to be difficult due to several issues, including the instability of recombinant proteins, the need for sustained delivery and the dosage of factors. New formulations of bioactive glass, 58S nanosized bioactive glass (58S-NBG), have been reported to enhance wound healing in animal models better than the first generation of 45S5 Bioglass. Therefore, we investigated the effects of extracts of 58S-NBG and 80S-NBG on cultures of human umbilical vein endothelial cells (HUVECs). Cell viability was assessed by MTS assay. In vitro angiogenesis was measured using an ECM gel tube formation assay, and levels of mRNAs for five angiogenic related genes were measured by qRT-PCR. Extracts of 58S-NBG and 80S-NBG stimulated the proliferation of HUVECs, accelerated cell migration, up-regulated expression of the vascular endothelial growth factor, basic fibroblast growth factor, their receptors, and endothelial nitric oxide synthase, resulting in enhanced tube formation in vitro. The enhanced angiogenic response correlated with increased levels of Ca and Si in the extracts of 58S-NBG and 80S-NBG. The ability of 58S-NBG and 80S-NBG to stimulate angiogenesis in vitro provides alternative approaches for stimulating neovascularization of tissue-engineered constructs. © 2015 IOP Publishing Ltd.


Mao C.,South China University of Technology | Mao C.,National Engineering Research Center for Tissues Restoration and Reconstruction | Chen X.,South China University of Technology | Chen X.,National Engineering Research Center for Tissues Restoration and Reconstruction | And 7 more authors.
Materials Science and Engineering C | Year: 2016

The use of biomaterials from laboratories to clinics requires exhaustive and elaborate studies involving the biodistribution, clearance, and biocompatibility of biomaterials for in vivo biomedical applications. This study aimed to evaluate the acute toxicity and biodistribution of intravenously administrated sub-micrometer mesoporous bioactive glass spheres (SMBGs) in mice. The lethal dose 50 (LD50) of SMBGs was higher than 250 mg/kg. The acute toxicity was evaluated at 14 days after intravenous injection of SMBGs at 20, 100 and 180 mg/kg in ICR mice. The mortality, coefficients of major organs, hematology data and blood biochemical indexes revealed the low in vivo toxicity of SMBGs at all doses. However, the histological examination showed lymphocytic infiltration and granuloma formation in hepatocyte and megakaryocyte hyperplasia in the spleen at high dose. The silicon content analysis using ICP-OES and TEM results indicated that SMBGs mainly distributed in the resident macrophages of the liver and spleen, and could be cleared from the body more than 2 weeks. These findings can be important for the toxicity assessment of sub-micrometer particles and the development of bioactive glass based drug delivery system for biomedical applications. © 2015 Elsevier B.V. All rights reserved.


Han X.,National Engineering Research Center for Tissues Restoration and Reconstruction | Han X.,South China University of Technology | Chen X.-F.,National Engineering Research Center for Tissues Restoration and Reconstruction | Chen X.-F.,South China University of Technology | And 10 more authors.
Wuji Cailiao Xuebao/Journal of Inorganic Materials | Year: 2011

Biomimetic scaffold for bone tissue engineering was prepared by mixing Sol-Gel bioactive glass with type I collagen through freeze-drying technique. In vitro, the biocompatibility of the scaffold was investigated by observing the adhesive, proliferative and differential behaviors of the rat mesenchymal stem cells (rMSCs). In vivo, the composite scaffold seeded with osteoblasts was implanted subcutaneously into the immunodeficient mice for 6w. It was proved that the composite scaffold was non-cytotoxic and suitable for cells' proliferation, which was confirmed by the increase of double stranded DNA (ds DNA). The differentiation of rMSCs on the composite scaffold was also observed by positive expressions of alkaline phosphatase (ALP) and osteocalcin after osteoinduction for 14d. The results of general and histological observation showed that cells successfully spread on the surface and migrated into the interior of the scaffold. Moreover, bone formation analysis of cell-scaffold constructs in vivo showed that bone tissue and blood vessels were regenerated both inside and on the border of the scaffold-stack. All results demonstrate the Sol-Gel bioactive glass-type I collagen scaffold with good biocompatibility and osteogenesis is a new ideal scaffold for bone tissue repair and regeneration.

Loading National Engineering Research Center for Tissues Restoration and Reconstruction collaborators
Loading National Engineering Research Center for Tissues Restoration and Reconstruction collaborators