National Engineering Research Center for Crop Molecular Design

Beijing, China

National Engineering Research Center for Crop Molecular Design

Beijing, China

Time filter

Source Type

Ouyang X.,Yale University | Ouyang X.,Peking University | Ouyang X.,Chengdu University of Technology | Li J.,Yale University | And 15 more authors.
Plant Cell | Year: 2011

FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposasederived transcription factors, are key components in phytochromeAsignaling and the circadian clock. Here,weuse chromatin immunoprecipitation-based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in the Arabidopsis thaliana genome. FHY3 preferentially binds to promoters through the FHY3/FAR1 binding motif (CACGCGC). Interestingly, FHY3 also binds to two motifs in the 178-bp Arabidopsis centromeric repeats. Comparison between the ChIP-seq and microarray data indicates that FHY3 quickly regulates the expression of 197 and 86 genes in D and FR, respectively. FHY3 also coregulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE5 and ELONGATED HYPOCOTYL5. Moreover, we uncover a role for FHY3 in controlling chloroplast development by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5, whose product is a structural component of the latter stages of chloroplast division in Arabidopsis. Taken together, our data suggest that FHY3 regulates multiple facets of plant development, thus providing insights into its functions beyond light and circadian pathways. © 2011 American Society of Plant Biologists.


Dai M.,Yale University | Zhang C.,National University of Singapore | Zhang C.,Huazhong Agricultural University | Kania U.,Ghent University | And 19 more authors.
Plant Cell | Year: 2012

The directional transport of the phytohormone auxin depends on the phosphorylation status and polar localization of PIN-FORMED (PIN) auxin efflux proteins. While PINIOD (PID) kinase is directly involved in the phosphorylation of PIN proteins, the phosphatase holoenzyme complexes that dephosphorylate PIN proteins remain elusive. Here, we demonstrate that mutations simultaneously disrupting the function of Arabidopsis thaliana FyPP1 (for Phytochrome-associated serine/threonine protein phosphatase1) and FyPP3, two homologous genes encoding the catalytic subunits of protein phosphatase6 (PP6), cause elevated accumulation of phosphorylated PIN proteins, correlating with a basal-to-apical shift in subcellular PIN localization. The changes in PIN polarity result in increased root basipetal auxin transport and severe defects, including shorter roots, fewer lateral roots, defective columella cells, root meristem collapse, abnormal cotyledons (small, cup-shaped, or fused cotyledons), and altered leaf venation. Our molecular, biochemical, and genetic data support the notion that FyPP1/3, SAL (for SAPS DOMAIN-LIKE), and PP2AA proteins (RCN1 [for ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1] or PP2AA1, PP2AA2, and PP2AA3) physically interact to form a novel PP6-type heterotrimeric holoenzyme complex. We also show that FyPP1/3, SAL, and PP2AA interact with a subset of PIN proteins and that for SAL the strength of the interaction depends on the PIN phosphorylation status. Thus, an Arabidopsis PP6-type phosphatase holoenzyme acts antagonistically with PID to direct auxin transport polarity and plant development by directly regulating PIN phosphorylation. © 2012 American Society of Plant Biologists. All rights reserved.


Li G.,Yale University | Siddiqui H.,Royal Holloway, University of London | Teng Y.,Hangzhou Normal University | Lin R.,CAS Institute of Botany | And 11 more authors.
Nature Cell Biology | Year: 2011

The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light-dark cycle to the central oscillator.


Li G.,Yale University | Siddiqui H.,Royal Holloway, University of London | Teng Y.,Hangzhou Normal University | Lin R.,CAS Institute of Botany | And 13 more authors.
Nature Cell Biology | Year: 2011

The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light-dark cycle to the central oscillator. © 2011 Macmillan Publishers Limited. All rights reserved.


Liu X.,Chinese Academy of Agricultural Sciences | Wan X.,National Engineering Research Center for Crop Molecular Design | Wan X.,Nanjing Agricultural University | Ma X.,Nanjing Agricultural University | And 2 more authors.
Genome | Year: 2010

Quantitative trait locus (QTL) mapping and stability analysis were carried out for 16 rice (Oryza sativa L.) quality traits across eight environments, by using a set of chromosome segment substitution lines with 'Asominori' as genetic background. The 16 quality traits include percentage of grain with chalkiness (PGWC), area of chalky endosperm (ACE), amylose content (AC), protein content (PC), peak viscosity, hot paste viscosity, cool paste viscosity, breakdown viscosity (BDV), setback viscosity (SBV), consistency viscosity, cooked-rice luster (LT), scent, tenderness (TD), viscosity, elasticity, and the integrated values of organleptic evaluation (IVOE). A total of 132 additive effect QTLs are detected for the 16 quality straits in the eight environments. Among these QTLs, 56 loci were detected repeatedly in at least three environments. Interestingly, several QTL clusters were observed for multiple quality traits. Especially, one QTL cluster near the G1149 marker on chromosome 8 includes nine QTLs: qPGWC-8, qACE-8, qAC-8, qPC-8a, qBDV-8a, qSBV-8b, qLT-8a, qTD-8a, and qIVOE-8a, which control PGWC, ACE, AC, PC, BDV, SBV, LT, TD, and IVOE, respectively. Moreover, this QTL cluster shows high stability and repeatability in all eight environments. In addition, one QTL cluster was located near the C2340 marker on chromosome 1 and another was detected near the XNpb67 marker on chromosome 2; each cluster contained five loci. Near the C563 marker on chromosome 3, one QTL cluster with four loci was found. Also, there were nine QTL clusters that each had two or three loci; however, their repeatability in different environments was relatively lower, and the genetic contribution rate was relatively smaller. Considering the correlations among all of the 16 quality traits with QTL cluster distributions, we can conclude that the stable and major QTL cluster on chromosome 8 is the main genetic basis for the effect of rice chalkiness, AC, PC, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice. Consequently, this QTL cluster is a novel gene resource for controlling rice high-quality traits and should be of great significance for research on formation mechanism and molecule improvement of rice quality.


Dai M.,Yale University | Xue Q.,Yale University | Mccray T.,Yale University | Margavage K.,Yale University | And 16 more authors.
Plant Cell | Year: 2013

The basic Leucine zipper transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) is a key regulator of abscisic acid (ABA)- mediated seed germination and postgermination seedling growth. While a family of SUCROSE NONFERMENTING1-related protein kinase2s (SnRK2s) is responsible for ABA-induced phosphorylation and stabilization of ABI5, the phosphatase(s) responsible for dephosphorylating ABI5 is still unknown. Here, we demonstrate that mutations in FyPP1 (for Phytochromeassociated serine/threonine protein phosphatase1) and FyPP3, two homologous genes encoding the catalytic subunits of Ser/ Thr PROTEIN PHOSPHATASE6 (PP6), cause an ABA hypersensitive phenotype in Arabidopsis thaliana, including ABA-mediated inhibition of seed germination and seedling growth. Conversely, overexpression of FyPP causes reduced sensitivity to ABA. The ABA hypersensitive phenotype of FyPP loss-of-function mutants is ABI5 dependent, and the amount of phosphorylated and total ABI5 proteins inversely correlates with the levels of FyPP proteins. Moreover, FyPP proteins physically interact with ABI5 in vitro and in vivo, and the strength of the interaction depends on the ABI5 phosphorylation status. In vitro phosphorylation assays show that FyPP proteins directly dephosphorylate ABI5. Furthermore, genetic and biochemical assays show that FyPP proteins act antagonistically with SnRK2 kinases to regulate ABI5 phosphorylation and ABA responses. Thus, Arabidopsis PP6 phosphatase regulates ABA signaling through dephosphorylation and destabilization of ABI5. © 2013 American Society of Plant Biologists. All rights reserved.


Li J.,Nanjing Agricultural University | Zhang W.,Nanjing Agricultural University | Wu H.,Nanjing Agricultural University | Guo T.,Nanjing Agricultural University | And 13 more authors.
Breeding Science | Year: 2011

Amylose content (AC) and viscosity profile are primary indices for evaluating eating and cooking qualities of rice grain. Using chromosome segment substitution lines (CSSLs), previous studies identified a QTL cluster of genes for rice eating and cooking quality in the interval R727-G1149 on chromosome 8. In this study we report two QTLs for viscosity parameters, respectively controlling setback viscosity (SBV) and consistency viscosity (CSV), located in the same interval using rapid viscosity analyzer (RVA) profile as an indicator of eating quality. Previously reported QTL for AC was dissected into two components with opposite genetic effects. Of four QTLs, qCSV-8 and qAC-8-2 had stable genetic effects across three and four environments, respectively. qSBV-8, qCSV-8 and qAC-8-1 partly overlapped, but were separated from qAC-8-2. Based on data from an Affymetrix rice GeneChip, two genes related to starch biosynthesis at the qAC-8-2 locus were chosen for further quantitative expression analysis. Both genes showed enhanced expression in sub-CSSLs carrying the target qAC-8-2 allele, but not in sub-CSSLs without the target qAC-8-2 allele, indicating their possible role in rice quality determination. Molecular markers closely linked to the two stable QTL provide the opportunity for marker-assisted selection (MAS) in breeding high quality rice.


Dai M.,Yale University | Terzaghi W.,Yale University | Terzaghi W.,Wilkes University | Wang H.,Yale University | And 3 more authors.
Plant Signaling and Behavior | Year: 2013

Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli. © 2013 Landes Bioscience.

Loading National Engineering Research Center for Crop Molecular Design collaborators
Loading National Engineering Research Center for Crop Molecular Design collaborators