Time filter

Source Type

Cheng L.,Key Laboratory of Transplant Engineering and Immunology | Ye F.,Key Laboratory of Transplant Engineering and Immunology | Lu X.,Key Laboratory of Transplant Engineering and Immunology | Wang J.,Key Laboratory of Transplant Engineering and Immunology | And 4 more authors.
Journal Wuhan University of Technology, Materials Science Edition | Year: 2010

HA/TCP and HA rods (φ5 mm×10 mm) were made for implantation in New Zealand white rabbit with different condition. Sixty three rabbit were divided into three groups: group 1 (n=18), group 2 (n=27) and group 3 (n=18). In group 1, 10 mm radius was defected, and one HA/TCP rod was implanted in the muscle a distant away from the bone defect area. In group 2, also, 10 mm radius was defected, one HA rod was implanted in the muscle a distant away from the bone defect area. In group 3, two HA/TCP rods were implanted in the dorsal muscle of the rabbit with bone intact. Histological observation showed that in group 1, some new bone was found only two months after implantation (n=2), and obvious immature woven bone could be observed in these bioceramics from the 3rd month on. However, in group 3, bone began to be found 6 months after implantation (n=2). In group 2, we could not find any bone tissue up to 9 month's observation. These results suggest that, first, the bone defect model could significantly accelerate bone formation at non-osseous sites in rabbits; second,. HA/TCP bioceramics were confirmed with osteoinductive property while HA bioceramics without osteoinductive property nearly. Thus, bone defect might be a good animal model for further researches for osteoinductive bioceramics. © 2010 Wuhan University of Technology and Springer Berlin Heidelberg. Source

Cheng L.,Key Laboratory of Transplant Engineering and Immunology | Ye F.,Key Laboratory of Transplant Engineering and Immunology | Yang R.,Key Laboratory of Transplant Engineering and Immunology | Lu X.,Key Laboratory of Transplant Engineering and Immunology | And 5 more authors.
Acta Biomaterialia | Year: 2010

Many studies have shown that calcium phosphate ceramics can induce bone formation in non-osseous sites without the application of any osteoinductive biomolecules, but the mechanisms of this phenomenon (intrinsic osteoinduction of bioceramics) remain unclear. In this study, we compared the intrinsic osteoinduction of porous hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) implanted in mice at different sites. In 30 mice the left fibula was fractured and the right fibula was kept intact. A porous HA/β-TCP cylinder was implanted into both the left (group 1) and right (group 2) leg muscles of each animal. In addition, two HA/β-TCP cylinders were bilaterally implanted into leg subcutaneous pockets (group 3) in each of the remaining 15 mice. New bone formation was studied in the three groups by histology, histomorphometry and immunostaining. In group 1 new bone was observed at week 6 and bone marrow appeared at week 12. In group 2 new bone was observed at week 8 and bone marrow appeared at week 12. The new bone area percentage in group 1 was significantly higher than in group 2 at both weeks 8 and 12. In contrast, group 3 did not show any new bone within the period studied. These differences were explained based on the location of the implants and thus their proximity to the osteogenic environment of fracture healing. The results support the hypothesis that intrinsic osteoinduction by calcium phosphate ceramics is the result of adsorption of osteoinductive substances on the surface. © 2009 Acta Materialia Inc. Source

Cheng L.,University of Sichuan | Lu X.,University of Sichuan | Shi Y.,University of Sichuan | Li L.,University of Sichuan | And 6 more authors.
Applied Surface Science | Year: 2012

Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application. © 2012 Elsevier B.V. All rights reserved. Source

Hu X.N.,University of Sichuan | Hu X.N.,National Engineering Research Center for Biomaterials | Yang B.C.,University of Sichuan | Yang B.C.,National Engineering Research Center for Biomaterials
Journal of Biomedical Materials Research - Part A | Year: 2014

The conformation change of bovine serum albumin (BSA) induced by bioactive titanium surfaces, including acid-alkali-treated titanium (AA-Ti) and alkali-heat-treated titanium (AH-Ti), was studied, and its effects on the activity of MC3T3-E1 cell were evaluated. Pure titanium metal (P-Ti) was used as control. The AA-Ti could adsorb more BSA on its surface than AH-Ti and P-Ti. The α-helix part of the protein adsorbed on P-Ti has weakly decreased compared with native BSA, and it dramatically decreased on AA-Ti and AH-Ti. The β-sheet segment of proteins adsorbed on P-Ti and AH-Ti had obviously increased. Much more tryptophan residues were exposed after the protein conformation changed when it interacted with AH-Ti, and some tryptophan residues were enveloped after it interacted with AA-Ti and P-Ti. AA-Ti has more tryptophan residues enveloped than P-Ti. All titanium surfaces induced tyrosine residues exposed, especially for the P-Ti. The higher ratio of COO -/NH3 + for the proteins on P-Ti and AA-Ti indicated an orientation of proteins on P-Ti and AA-Ti, which makes more COO- exposed. The lower ratio of COO-/NH3 + on AH-Ti indicates that more NH3 + is exposed on its surface. The cell proliferation ability on different treated titanium surfaces coated with BSA followed by the order: P-Ti > AA-Ti > AH-Ti, which indicated that the protein conformation change on different bioactive titanium surfaces has great effect on the cell activity. Our results showed that the different biological response of bioactive titanium metals might depend on the protein conformation change induced by the surface structure. © 2013 Wiley Periodicals, Inc. Source

Yue C.,University of Sichuan | Yue C.,National Engineering Research Center for Biomaterials | Yang B.,University of Sichuan | Yang B.,National Engineering Research Center for Biomaterials
Journal of Bionic Engineering | Year: 2014

Titanium metals and its alloy have been widely used in hard tissue repairing fields due to their good biocampatibility and mechanical properties. However, bioinert response and biomaterial associated infections are the main problems for their clinical application. In this study, we chose titanium plates treated with anodic oxidation (AO-Ti), alkali-heat (AH-Ti) and acid-alkali (AA-Ti) methods, which have been proved to be bioactive in vivo, to culture with Staphylococcus aureus and Escherichia coli to investigate the interaction between bioactive titanium surfaces and biofilm. We used X-ray diffraction (XRD), Scanning Electron Microscope (SEM), roughness measurement to study the physical-chemical properties of the as-received bioactive titanium surfaces, and Confocal Laser Scanning Microscope (CLSM) was employed to study the properties of biofilm formed on the biomaterial surfaces. The results indicate that the titanium surface subjected to anodic oxidation treatment is unfavorable for the formation of biofilm in vitro because the titania (TiO2) coating formed by anodizing has superior antimicrobial property than the other surfaces. Therefore, anodic oxidation surface modification is effective to endow titanium surface with bioactivity and antimicrobial property, which has the potential to improve the successful rate of the clinical application of titanium implants. © 2014 Jilin University. Source

Discover hidden collaborations