Time filter

Source Type

Wang K.,Shanghai University of Traditional Chinese Medicine | Wang K.,National Engineering Research Center for Biochip at Shanghai | Xiang X.-H.,Peking University | Xiang X.-H.,Key Laboratory of Neuroscience | And 15 more authors.
Journal of Neurochemistry | Year: 2010

It is generally believed that temporary moderate stress to a living organism has protective and adaptive effects, but little is known about the responses of CNS to the moderate stresses at molecular level. This study aims to investigate the gene expression changes induced by moderate stress in CNS stress- and nociception-related regions of rats. Moderate restraint was applied to rats for 50 min and cDNA microarrays were used to detect the differential gene expression in different CNS regions. Transcriptome profiling analysis showed that at acute stage stress-related genes were up-regulated in arcuate nucleus; fight-or-flight behavior-related genes were up-regulated in periaqueductal gray, while nitric oxide and GABA signal transmission-related genes were up-regulated in spinal dorsal horn. In addition, immune-related genes were broadly regulated, especially at the late stage. These results suggested that specific genes of certain gene ontology categories were spatiotemporally regulated in specific CNS regions related to relevant functions under moderate external stimuli at acute stage, while immune response was broadly regulated at the late stage. The co-regulated genes among the three different CNS regions may play general roles in CNS when exposed to moderate stress. Furthermore, these results will help to elucidate the physiological processes involved in moderate stress in CNS. © 2010 International Society for Neurochemistry.


Xiong F.-F.,Tongji University | Xiong F.-F.,National Engineering Research Center for Biochip at Shanghai | Li B.-S.,Shanghai JiaoTong University | Zhang C.-X.,National Engineering Research Center for Biochip at Shanghai | And 5 more authors.
BioMed Research International | Year: 2013

Chromosome rearrangements and fusion genes present major portion of leukemogenesis and contribute to leukemic subtypes. It is practical and helpful to detect the fusion genes in clinic diagnosis of leukemia. Present application of reverse transcription polymerase chain reaction (RT-PCR) method to detect the fusion gene transcripts is effective, but time- and labor-consuming. To set up a simple and rapid system, we established a method that combined multiplex RT-PCR and microarray. We selected 15 clinically most frequently observed chromosomal rearrangements generating more than 50 fusion gene variants. Chimeric reverse primers and chimeric PCR primers containing both gene-specific and universal sequences were applied in the procedure of multiplex RT-PCR, and then the PCR products hybridized with a designed microarray. With this approach, among 200 clinic samples, 63 samples were detected to have gene rearrangements. All the detected fusion genes positive and negative were validated with RT-PCR and Sanger sequencing. Our data suggested that the RT-PCR-microarray pipeline could screen 15 partner gene pairs simultaneously at the same accuracy of the fusion gene detection with regular RT-PCR. The pipeline showed effectiveness in multiple fusion genes screening in clinic samples. © 2013 Fei-Fei Xiong et al.


Zhong Y.,Shanghai University of Traditional Chinese Medicine | Zhang X.,Shanghai University of Traditional Chinese Medicine | Cai X.,Shanghai University of Traditional Chinese Medicine | Wang K.,National Engineering Research Center for Biochip at Shanghai | And 2 more authors.
PLoS ONE | Year: 2014

Radix puerariae, a traditional Chinese herbal medication, has been used successfully to treat patients with early stage of diabetic nephropathy. However, the underlined mechanism of this renal protective effect has not been determined. In the current study, we investigated the effects and the mechanism of puerarin in Streptozotocin (STZ)-induced diabetic rats. We treated STZ-rats with either puerarin or losartan, an angiotensin II receptor blocker, as compared to those treated with vehicle. We found that both puerarin and losartan attenuated kidney hypertrophy, mesangial expansion, proteinuria, and podocyte foot process effacement in STZ rats. In addition, both puerarin and losartan increased expression of podocyte slit diaphragm proteins such as nephrin and podocin. Interestingly, we found that puerarin treatment induced a more pronounced suppression of oxidative stress production and S-nitrosylation of proteins in the diabetic kidneys as compared to losartan treatment. Furthermore, we found that matrix metalloproteinase-9 (MMP-9), which is known to be activated by oxidative stress and S-nitrosylation of proteins, was also suppressed more extensively by puerarin than losartan. In conclusion, these data provide for the first time the potential mechanism to support the use of puerarin in the treatment of early diabetic nephropathy. © 2014 Zhong et al.


Wang K.,National Engineering Research Center for Biochip at Shanghai
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine / Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban | Year: 2012

To explore the effects of low-and high-frequency electroacupuncture (EA) on the gene expression profiles in rat spinal dorsal horn (DH) under the physiological state, thus providing the information to find out the differences of different EA frequencies induced effects. Using cDNA microarray, the changes of the gene expressions in the DH were detected and compared between 2 Hz EA and 100 Hz EA at bilateral Zusanli (ST36) and Sanyinjiao (SP6). The differentially expressed genes were identified. The EASE scores were used to comprehensively analyze the gene functions (by Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. (1) After EA stimulation 1 150 genes/expressed sequence tags (ESTs) were differentially expressed by 2 Hz EA, while 1 270 genes/ESTs were differentially expressed by 100 Hz EA. (2) Both 2 Hz and 100 Hz EA could induce the modulation of the same 516 genes/ESTs in the same direction, which was correlated with neural signal transmission. (3) The differentially expressed genes regulated specifically by 2 Hz were correlated with neural plasticity. (4) The differentially expressed genes regulated specifically by 100 Hz were correlated with stress and immunoregulation. Either low-or high-frequency EA could extensively regulate the spinal cord information processing. The low-frequency EA participated more in the regulation of neural plasticity, while high-frequency EA had more significant effects on stress and immunoregulation.


Liu H.-S.,National Engineering Research Center for Biochip at Shanghai | Liu H.-S.,Chinese National Human Genome Center at Shanghai | Liu H.-S.,Tongji University | Xiao H.-S.,National Engineering Research Center for Biochip at Shanghai | Xiao H.-S.,Chinese National Human Genome Center at Shanghai
World Journal of Gastroenterology | Year: 2014

Gastric cancer is the fourth most common cancer in the world and the second leading cause of cancer-related death. More than 80% of diagnoses occur at the middle to late stage of the disease, highlighting an urgent need for novel biomarkers detectable at earlier stages. Recently, aberrantly expressed microRNAs (miRNAs) have received a great deal of attention as potential sensitive and accurate biomarkers for cancer diagnosis and prognosis. This review summarizes the current knowledge about potential miRNA biomarkers for gastric cancer that have been reported in the publicly available literature between 2008 and 2013. Available evidence indicates that aberrantly expressed miRNAs in gastric cancer correlate with tumorigenesis, tumor proliferation, distant metastasis and invasion. Furthermore, tissue and cancer types can be classified using miRNA expression profiles and next-generation sequencing. As miRNAs in plasma/serum are well protected from RNases, they remain stable under harsh conditions. Thus, potential functions of these circulating miRNAs can be deduced and may implicate their diagnostic value in cancer detection. Circulating miRNAs, as well as tissue miRNAs, may allow for the detection of gastric cancer at an early stage, prediction of prognosis, and monitoring of recurrence and/or lymph node metastasis. Taken together, the data suggest that the participation of miRNAs in biomarker development will enhance the sensitivity and specificity of diagnostic and prognostic tests for gastric cancer. © 2014 Baishideng Publishing Group Inc. All rights reserved.


Wang K.,National Engineering Research Center for Biochip at Shanghai | Zhang R.,National Engineering Research Center for Biochip at Shanghai | Zhao G.-P.,National Engineering Research Center for Biochip at Shanghai
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine / Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban | Year: 2012

OBJECTIVE: To explore the effects of low-and high-frequency electroacupuncture (EA) on the gene expression profiles in rat spinal dorsal horn (DH) under the physiological state, thus providing the information to find out the differences of different EA frequencies induced effects.METHODS: Using cDNA microarray, the changes of the gene expressions in the DH were detected and compared between 2 Hz EA and 100 Hz EA at bilateral Zusanli (ST36) and Sanyinjiao (SP6). The differentially expressed genes were identified. The EASE scores were used to comprehensively analyze the gene functions (by Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.RESULTS: (1) After EA stimulation 1 150 genes/expressed sequence tags (ESTs) were differentially expressed by 2 Hz EA, while 1 270 genes/ESTs were differentially expressed by 100 Hz EA. (2) Both 2 Hz and 100 Hz EA could induce the modulation of the same 516 genes/ESTs in the same direction, which was correlated with neural signal transmission. (3) The differentially expressed genes regulated specifically by 2 Hz were correlated with neural plasticity. (4) The differentially expressed genes regulated specifically by 100 Hz were correlated with stress and immunoregulation.CONCLUSIONS: Either low-or high-frequency EA could extensively regulate the spinal cord information processing. The low-frequency EA participated more in the regulation of neural plasticity, while high-frequency EA had more significant effects on stress and immunoregulation.


PubMed | National Engineering Research Center for Biochip at Shanghai
Type: Journal Article | Journal: Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine | Year: 2013

To explore the effects of low-and high-frequency electroacupuncture (EA) on the gene expression profiles in rat spinal dorsal horn (DH) under the physiological state, thus providing the information to find out the differences of different EA frequencies induced effects.Using cDNA microarray, the changes of the gene expressions in the DH were detected and compared between 2 Hz EA and 100 Hz EA at bilateral Zusanli (ST36) and Sanyinjiao (SP6). The differentially expressed genes were identified. The EASE scores were used to comprehensively analyze the gene functions (by Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.(1) After EA stimulation 1 150 genes/expressed sequence tags (ESTs) were differentially expressed by 2 Hz EA, while 1 270 genes/ESTs were differentially expressed by 100 Hz EA. (2) Both 2 Hz and 100 Hz EA could induce the modulation of the same 516 genes/ESTs in the same direction, which was correlated with neural signal transmission. (3) The differentially expressed genes regulated specifically by 2 Hz were correlated with neural plasticity. (4) The differentially expressed genes regulated specifically by 100 Hz were correlated with stress and immunoregulation.Either low-or high-frequency EA could extensively regulate the spinal cord information processing. The low-frequency EA participated more in the regulation of neural plasticity, while high-frequency EA had more significant effects on stress and immunoregulation.


PubMed | National Engineering Research Center for Biochip at Shanghai
Type: Comparative Study | Journal: Journal of neuroscience research | Year: 2012

Electroacupuncture (EA) has been clinically applied for treating different medical conditions, such as pain, strain, and immune diseases. Low- and high-frequency EAs have distinct therapeutic effects in clinical practice and experimental studies. However, the molecular mechanism of this difference remains obscure. The arcuate nucleus (Arc) is a critical region of the hypothalamus and is responsible for the effect of EA stimulation to remote acupoints. Gene expression profiling provides a powerful tool with which to explore the basis of physiopathological responses to external stimulus. In this study, using cDNA microarray, we investigated gene expressions in the rat Arc region induced by low-frequency (2-Hz) and high-frequency (100-Hz) EAs to two remote acupoints, zusanli (ST36) and sanyinjiao (SP6). We have found that more genes were differentially regulated by 2-Hz EA than 100-Hz EA (154 vs. 66 regulated genes/ESTs) in Arc, especially those related to neurogenesis, which was confirmed by qRT-PCR. These results demonstrate that the expression level of genes in the Arc region could be effectively regulated by low-frequency EA, compared with high-frequency EA, helping to uncover the mechanisms of the therapeutic effects of the low-frequency EA. Our results also indicate different-frequency EAs are spatially specific.


PubMed | National Engineering Research Center for Biochip at Shanghai
Type: Journal Article | Journal: World journal of gastroenterology | Year: 2014

Gastric cancer is the fourth most common cancer in the world and the second leading cause of cancer-related death. More than 80% of diagnoses occur at the middle to late stage of the disease, highlighting an urgent need for novel biomarkers detectable at earlier stages. Recently, aberrantly expressed microRNAs (miRNAs) have received a great deal of attention as potential sensitive and accurate biomarkers for cancer diagnosis and prognosis. This review summarizes the current knowledge about potential miRNA biomarkers for gastric cancer that have been reported in the publicly available literature between 2008 and 2013. Available evidence indicates that aberrantly expressed miRNAs in gastric cancer correlate with tumorigenesis, tumor proliferation, distant metastasis and invasion. Furthermore, tissue and cancer types can be classified using miRNA expression profiles and next-generation sequencing. As miRNAs in plasma/serum are well protected from RNases, they remain stable under harsh conditions. Thus, potential functions of these circulating miRNAs can be deduced and may implicate their diagnostic value in cancer detection. Circulating miRNAs, as well as tissue miRNAs, may allow for the detection of gastric cancer at an early stage, prediction of prognosis, and monitoring of recurrence and/or lymph node metastasis. Taken together, the data suggest that the participation of miRNAs in biomarker development will enhance the sensitivity and specificity of diagnostic and prognostic tests for gastric cancer.

Loading National Engineering Research Center for Biochip at Shanghai collaborators
Loading National Engineering Research Center for Biochip at Shanghai collaborators