National Center for Tea Improvement

Hangzhou, China

National Center for Tea Improvement

Hangzhou, China
Time filter
Source Type

Hao X.,Chinese Academy of Agricultural Sciences | Hao X.,National Center for Tea Improvement | Yang Y.,Chinese Academy of Agricultural Sciences | Yang Y.,National Center for Tea Improvement | And 7 more authors.
Frontiers in Plant Science | Year: 2017

Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To discover the bud dormancy regulation mechanism of tea plant in winter, we analyzed the global gene expression profiles of axillary buds at the paradormancy, endodormancy, ecodormancy, and bud flush stages by RNA-Seq analysis. In total, 16,125 differentially expressed genes (DEGs) were identified among the different measured conditions. Gene set enrichment analysis was performed on the DEGs identified from each dormancy transition. Enriched gene ontology terms, gene sets and transcription factors were mainly associated with epigenetic mechanisms, phytohormone signaling pathways, and callose-related cellular communication regulation. Furthermore, differentially expressed transcription factors as well as chromatin- and phytohormone-associated genes were identified. GI-, CAL-, SVP-, PHYB-, SFR6-, LHY-, ZTL-, PIF4/6-, ABI4-, EIN3-, ETR1-, CCA1-, PIN3-, CDK-, and CO-related gene sets were enriched. Based on sequence homology analysis, we summarized the key genes with significant expression differences in poplar and tea plant. The major molecular pathways involved in tea plant dormancy regulation are consistent with those of poplar to a certain extent; however, the gene expression patterns varied. This study provides the global transcriptome profiles of overwintering buds at different dormancy stages and is meaningful for improving the understanding of bud dormancy in tea plant. © 2017 Hao, Yang, Yue, Wang, Horvath and Wang.

Cao H.,Chinese Academy of Agricultural Sciences | Cao H.,Key Laboratory of Tea Biology and Resources Utilization | Wang L.,Chinese Academy of Agricultural Sciences | Wang L.,National Center for Tea Improvement | And 12 more authors.
Plant Physiology and Biochemistry | Year: 2015

Basic leucine zipper (bZIP) transcription factors (TFs) play essential roles in regulating stress processes in plants. Despite the economic importance of this woody crop, there is little information about bZIP TFs in tea plants. In this study, 18 bZIP genes were isolated from the tea plant (Camellia sinensis) and named sequentially from CsbZIP1 to CsbZIP18. According to the phylogenetic classification as in Arabidopsis, the CsbZIP genes spanned ten subgroups (Group A, B, C, D, E, F, H, I, S and K) of bZIP TFs. When analyzed for organ specific expression, all CsbZIP genes were found to be ubiquitously expressed in roots, stems, leaves and flowers. Expression analysis of CsbZIP genes in response to four abiotic stresses showed that in leaves, 9, 9, 15 and 11 CsbZIPs have 2-fold greater variation in transcript abundance under cold, exogenous ABA, high salinity and dehydration conditions, respectively. In roots, 5, 12, 14 and 11 CsbZIPs were differentially expressed under conditions of cold, exogenous ABA, high salinity and dehydration stresses. Moreover, CsbZIP genes in Groups F, H, S and K exhibited several folds up-and/or down-regulation against the above four stresses. Notably, CsbZIP18 of group K showed significant up-regulation in response to these same stresses, suggesting a vital functional role in stress response. Together, these findings increase our knowledge of bZIP TFs in the tea plant and suggest the significance of CsbZIP genes in plant abiotic responses. © 2015 Elsevier Masson SAS.

Yue C.,Chinese Academy of Agricultural Sciences | Yue C.,Key Laboratory of Tea Biology and Resources Utilization | Cao H.-L.,Chinese Academy of Agricultural Sciences | Cao H.-L.,Key Laboratory of Tea Biology and Resources Utilization | And 22 more authors.
Plant Molecular Biology | Year: 2015

Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed. © 2015, Springer Science+Business Media Dordrecht.

Yue C.,Chinese Academy of Agricultural Sciences | Yue C.,Key Laboratory of Tea Biology and Resources Utilization | Cao H.,Chinese Academy of Agricultural Sciences | Cao H.,Key Laboratory of Tea Biology and Resources Utilization | And 16 more authors.
Plant Physiology and Biochemistry | Year: 2014

The role of aquaporin proteins (AQPs) has been extensively studied in plants. However, the information of AQPs in the tea plant (Camellia sinensis) is unclear. In this manuscript, we isolated 20 full-length AQP cDNAs from the tea plant, and these sequences were classified into five subfamilies. The genes in these subfamilies displayed differential expression profiles in the studied tissues. The CsAQP expression patterns correlated with flower development and opening (FDO) and bud endodormancy (BED). To better understand the short-term expression patterns of CsAQPs in response to abiotic stress, tea plants were treated with abscisic acid (ABA), cold, salt or drought. ABA treatment down-regulated the expression of various CsAQPs. Salt up-regulated the transcription of most CsAQP genes. Cold treatment resulted in a complicated transcriptional regulation pattern for various CsAQPs. The expression of CsAQPs, especially plasma membrane intrinsic proteins (CsPIPs) and tonoplast intrinsic proteins (CsTIPs), was induced by drought and remained relatively high after rehydration in leaves, whereas almost all the CsAQPs were repressed in roots. Our results highlighted the diversity of CsAQPs in the tea plant and demonstrated that the CsPIP and CsTIP genes play a vital role in the stress response as well as in FDO and BED. Furthermore, certain CsSIPs (small basic intrinsic proteins), CsNIPs (NOD26-like intrinsic proteins) and CsXIPs (X intrinsic proteins) may regulate BED and FDO. © 2014 Elsevier Masson SAS.

Hao X.,Chinese Academy of Agricultural Sciences | Hao X.,National Center for Tea Improvement | Hao X.,Agriculture Research Services | Hao X.,Northwest University, China | And 4 more authors.
PLoS ONE | Year: 2015

Leafy spurge (Euphorbia esula L.) is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. It is also capable of flowering and producing seeds, but requires vernalization in some cases. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direct role in the transition to winter-induced dormancy and maintenance through regulation of the FLOWERING LOCUS T (FT) gene, which also is likely involved in the vernalization process. To explore the regulation of FT and DAM during dormancy transitions in leafy spurge, the transcript accumulation of two previously cloned DAM splice variants and two different previously cloned FT genes was characterized. Under long-photoperiods (16 h light), both DAM and FT transcripts accumulate in a diurnal manner. Tissue specific expression patterns indicated the tissues with high DAM expression had low FT expression and vice versa. DAM expression is detected in leaves, stems, shoot tips, and crown buds. FT transcripts were detected mainly in leaves and flowers. Under dormancy inducing conditions, DAM and FT genes had an inverse expression pattern. Additionally, chromatin immunoprecipitation assays were performed using DAM-like protein specific antibodies to demonstrate that DAM or related proteins likely bind to cryptic and/or conserved CArG boxes in the promoter regions of FT genes isolated from endodormant crown buds. These results are consistent with the hypothesis that DAM proteins play a crucial role in leafy spurge dormancy transition and maintenance, potentially by negatively regulating the expression of FT. © 2015, Public Library of Science. All rights reserved.

Hao X.,Northwest University, China | Hao X.,U.S. Department of Agriculture | Hao X.,Chinese Academy of Agricultural Sciences | Hao X.,National Center for Tea Improvement | And 8 more authors.
International Journal of Molecular Sciences | Year: 2014

Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a crucial step in qRT-PCR normalization. To date, only a few housekeeping genes have been identified and used as reference genes in tea plant. The validity of those reference genes are not clear since their expression stabilities have not been rigorously examined. To identify more appropriate reference genes for qRT-PCR studies on tea plant, we examined the expression stability of 11 candidate reference genes from three different sources: the orthologs of Arabidopsis traditional reference genes and stably expressed genes identified from whole-genome GeneChip studies, together with three housekeeping gene commonly used in tea plant research. We evaluated the transcript levels of these genes in 94 experimental samples. The expression tabilities of these 11 genes were ranked using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCT method. Results showed that the three commonly used housekeeping genes of CsTUBULIN1, CsACINT1 and Cs18S rRNA1 together with CsUBQ1 were the most unstable genes in all sample ranking order. However, CsPTB1, CsEF1, CsSAND1, CsCLATHRIN1 and CsUBC1 were the top five appropriate reference genes for qRT-PCR analysis in complex experimental conditions. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Loading National Center for Tea Improvement collaborators
Loading National Center for Tea Improvement collaborators