Time filter

Source Type

Mancebo A.,National Center for Laboratory Animals Breeding | Gonzalez B.,National Center for Laboratory Animals Breeding | Gomez D.,National Center for Laboratory Animals Breeding | Leon A.,National Center for Laboratory Animals Breeding | And 6 more authors.
Regulatory Toxicology and Pharmacology | Year: 2012

Our goal was to assess the toxicity of two strengths (200 and 400. μg) of HER1 cancer vaccine (Center of Molecular Immunology, Cuba), presented in two different formulations, in Sprague Dawley rats after repeated intramuscular administration (14. days). Four groups (5 animals/sex) were established: Control, Placebo (adjuvant), and two Treated groups receiving a dose representing ten times of human total dose (10×), 28.6 and 57.1. μg/kg. Clinical observations, body weight and rectal temperature were measured during the study. Clinical pathology analysis was performed, besides gross necropsy and histological examination of tissues on animals at the end of the assay. The assay ended with a 100% survival. Injection site damage, with the presence of cysts and granulomas, was observed in adjuvant and vaccine treated groups, with most severe cases predominating at higher strength. Administration of Placebo and Her1 vaccine induced increase in polymorphonuclear cells, with relative lymphopenia conditioned by primary neutrophilia. In summary, results suggest that Her1 immunization was capable of inducing an inflammatory effect at the injection site, leading to systemic alterations, more significant at higher strength (400. μg, 57.1. μg/kg), probably affected by the immunizations' schedule used. The vaccine was shown to be well tolerated without any obvious signs of systemic toxicity, with findings largely attributable to the adjuvant used. © 2012 Elsevier Inc.


Barro A.M.B.,National Center for Laboratory Animals Breeding | Goni A.L.,National Center for Laboratory Animals Breeding | Navarro B.O.G.,National Center for Laboratory Animals Breeding | Angarica M.M.,The Surgical Center | And 2 more authors.
Vaccine | Year: 2012

Human epidermal growth factor receptor (HER1) constitutes a tumor associated antigen. Its overexpression in many epithelial tumors has been associated with bad prognosis and poor survival. Cancer vaccine based on the extracellular domain (ECD) of HER1 and adjuvated in very small sized proteoliposomes (VSSP) and Montanide ISA 51-VG is a new and complementary approach for the treatment of epithelial tumors. The present study deals with the immunogenicity of this vaccine in Macaca fascicularis monkeys and evaluation of its toxicity during 12 months. Twelve monkeys were randomized into two groups of 3 animals per sex: control and vaccinated. Treated monkeys received 9 doses of vaccination and were daily inspected for clinical signs. Body weight, rectal temperature, cardiac and respiratory rates were measured during the study. Humoral immune response, clinical pathology parameters and delayed type hypensensitivity were analyzed. Skin biopsy was performed at the end of the study in all animals. Animal's survival in the study was 100% (n= 12). Local reactions were observed at the administration site of four treated animals (n=6), with two showing slight inflammatory cutaneous damage. Clinical pathology parameters were not affected. HER1 vaccine induced high IgG antibodies titers in the treated animals even when DTH was not observed. The induced antibodies recognized HER1+ tumor cell lines, decreased HER1 phosphorylation and showed anti-proliferative and pro-apoptotic effects in H125 cells. In general the present study showed that HER1 vaccine induced specific immune response in M. fascicularis monkeys and was well tolerated, suggesting it could be safely used in clinical studies in epithelial cancer patients. © 2012 Elsevier Ltd.


Mancebo A.,National Center for Laboratory Animals Breeding | Gonzalez B.,National Center for Laboratory Animals Breeding | Leon A.,National Center for Laboratory Animals Breeding | Gomez D.,National Center for Laboratory Animals Breeding | And 5 more authors.
Vaccine | Year: 2012

CIMAvax-EGF consists of a human recombinant epidermal growth factor (EGF), coupled to P64k, a recombinant carrier protein from N. meningitis, and Montanide ISA 51 as adjuvant. The vaccine immunization induces a specific antibody production, inhibiting the EGF/EGF-R interaction through EGF deprivation. The objective of this study was to assess the CIMAvax-EGF toxicity in Sprague Dawley rats after intramuscular administration of repeated doses (6 months) and at the same time to determine if rat is a relevant species for studying CIMAvax-EGF vaccine. Rats were randomly distributed into four groups: control, Montanide ISA 51, treated with 1× and 15× of human total dose of the antigen. Animals were immunized weekly during 9 weeks, plus 9 immunizations every 14 days. Rats were inspected daily for clinical signs. Body weight, food consumption, and rectal temperature were measured during the administration of doses. Blood samples were collected for hematological, serum biochemical determinations and EGF titles at the beginning, three months and at the end of experimentation. Gross necropsy and histological examination of tissues were performed on animals at the end of the assay. Vaccine provoked the apparition of antibodies against EGF in the rats, demonstrating rat species relevance in these studies. Body weight gain, food and water consumption were not affected. CIMAvax-EGF and Montanide ISA 51 produced local damage at the administration site, showing multiple cysts and granulomas. Both vaccine-treated groups showed neutrophil elevation, besides an AST increase probably related to the damage at the administration site. Rectal temperature was found to be significantly higher in 15× treated group after immunizations, probably induced by the inflammatory process at the injection site. In summary, the clinical pathology findings together with the body temperature results, appear to be caused by the inflammatory reaction at the administration site of the vaccine, mainly mediated by the oil-based adjuvant Montanide ISA 51, probably enhanced by the immunological properties of the antigen. This study showed evidences that intramuscular administration during 26 weeks of CIMAvax-EGF at doses up to 15× human total dose is well tolerated in rats and it has a clinical importance since this long lasting study in relevant species allows to treat cancer patients with tumors during long periods with relative weight safety margin. © 2012 Elsevier Ltd.


PubMed | National Center for Laboratory Animals Breeding, LABIOFAM and University of Habana
Type: Journal Article | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2014

Bacillus thuringiensis (Bt) is the best known and most widely used of all pesticidal microbes. The aim of this study was to assess the toxicity of a new formulation of Bacillus thuringiensis var israelensis SH-14 in rats through acute dermal toxicity, dermal and eye irritation experiments. The acute dermal toxicity and dermal and eye irritation studies were performed using rabbits according to the United States Environmental Protection Agency guidelines 885.3100, 870.2500 and 870.2500, respectively. The skin sensitization study was carried out in accordance to the EPA OPPTS 870.2600 using guinea pigs. There was no mortality and no evidence of treatment-related toxicity in acute dermal toxicity test. No dermal responses, including erythema/eschar or edema, were found in rabbits treated with the new formulation of Bti SH-14. Minimum response was observed after eye application of test substance. No skin sensitization reactions were observed after the challenge with the new formulation of Bti SH-14 in the Bti SH-14-treated guinea pigs. In summary, the present study demonstrated that the new formulation of Bti SH-14 is not acutely toxic via dermal route, has low eye irritation and would not cause dermal irritation or hypersensitivity to tested animals.


PubMed | National Center for Laboratory Animals Breeding
Type: Journal Article | Journal: Vaccine | Year: 2012

Human epidermal growth factor receptor (HER1) constitutes a tumor associated antigen. Its overexpression in many epithelial tumors has been associated with bad prognosis and poor survival. Cancer vaccine based on the extracellular domain (ECD) of HER1 and adjuvated in very small sized proteoliposomes (VSSP) and Montanide ISA 51-VG is a new and complementary approach for the treatment of epithelial tumors. The present study deals with the immunogenicity of this vaccine in Macaca fascicularis monkeys and evaluation of its toxicity during 12 months. Twelve monkeys were randomized into two groups of 3 animals per sex: control and vaccinated. Treated monkeys received 9 doses of vaccination and were daily inspected for clinical signs. Body weight, rectal temperature, cardiac and respiratory rates were measured during the study. Humoral immune response, clinical pathology parameters and delayed type hypensensitivity were analyzed. Skin biopsy was performed at the end of the study in all animals. Animals survival in the study was 100% (n=12). Local reactions were observed at the administration site of four treated animals (n=6), with two showing slight inflammatory cutaneous damage. Clinical pathology parameters were not affected. HER1 vaccine induced high IgG antibodies titers in the treated animals even when DTH was not observed. The induced antibodies recognized HER1+ tumor cell lines, decreased HER1 phosphorylation and showed anti-proliferative and pro-apoptotic effects in H125 cells. In general the present study showed that HER1 vaccine induced specific immune response in M. fascicularis monkeys and was well tolerated, suggesting it could be safely used in clinical studies in epithelial cancer patients.


PubMed | National Center for Laboratory Animals Breeding
Type: Comparative Study | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2012

Our goal was to assess the toxicity of two strengths (200 and 400 g) of HER1 cancer vaccine (Center of Molecular Immunology, Cuba), presented in two different formulations, in Sprague Dawley rats after repeated intramuscular administration (14 days). Four groups (5 animals/sex) were established: Control, Placebo (adjuvant), and two Treated groups receiving a dose representing ten times of human total dose (10), 28.6 and 57.1 g/kg. Clinical observations, body weight and rectal temperature were measured during the study. Clinical pathology analysis was performed, besides gross necropsy and histological examination of tissues on animals at the end of the assay. The assay ended with a 100% survival. Injection site damage, with the presence of cysts and granulomas, was observed in adjuvant and vaccine treated groups, with most severe cases predominating at higher strength. Administration of Placebo and Her1 vaccine induced increase in polymorphonuclear cells, with relative lymphopenia conditioned by primary neutrophilia. In summary, results suggest that Her1 immunization was capable of inducing an inflammatory effect at the injection site, leading to systemic alterations, more significant at higher strength (400 g, 57.1 g/kg), probably affected by the immunizations schedule used. The vaccine was shown to be well tolerated without any obvious signs of systemic toxicity, with findings largely attributable to the adjuvant used.


PubMed | National Center for Laboratory Animals Breeding
Type: Journal Article | Journal: Vaccine | Year: 2012

CIMAvax-EGF consists of a human recombinant epidermal growth factor (EGF), coupled to P64k, a recombinant carrier protein from N. meningitis, and Montanide ISA 51 as adjuvant. The vaccine immunization induces a specific antibody production, inhibiting the EGF/EGF-R interaction through EGF deprivation. The objective of this study was to assess the CIMAvax-EGF toxicity in Sprague Dawley rats after intramuscular administration of repeated doses (6 months) and at the same time to determine if rat is a relevant species for studying CIMAvax-EGF vaccine. Rats were randomly distributed into four groups: control, Montanide ISA 51, treated with 1 and 15 of human total dose of the antigen. Animals were immunized weekly during 9 weeks, plus 9 immunizations every 14 days. Rats were inspected daily for clinical signs. Body weight, food consumption, and rectal temperature were measured during the administration of doses. Blood samples were collected for hematological, serum biochemical determinations and EGF titles at the beginning, three months and at the end of experimentation. Gross necropsy and histological examination of tissues were performed on animals at the end of the assay. Vaccine provoked the apparition of antibodies against EGF in the rats, demonstrating rat species relevance in these studies. Body weight gain, food and water consumption were not affected. CIMAvax-EGF and Montanide ISA 51 produced local damage at the administration site, showing multiple cysts and granulomas. Both vaccine-treated groups showed neutrophil elevation, besides an AST increase probably related to the damage at the administration site. Rectal temperature was found to be significantly higher in 15 treated group after immunizations, probably induced by the inflammatory process at the injection site. In summary, the clinical pathology findings together with the body temperature results, appear to be caused by the inflammatory reaction at the administration site of the vaccine, mainly mediated by the oil-based adjuvant Montanide ISA 51, probably enhanced by the immunological properties of the antigen. This study showed evidences that intramuscular administration during 26 weeks of CIMAvax-EGF at doses up to 15 human total dose is well tolerated in rats and it has a clinical importance since this long lasting study in relevant species allows to treat cancer patients with tumors during long periods with relative weight safety margin.

Loading National Center for Laboratory Animals Breeding collaborators
Loading National Center for Laboratory Animals Breeding collaborators