a National Center for Cool and Cold Water Aquaculture

Leetown, Virginia, United States

a National Center for Cool and Cold Water Aquaculture

Leetown, Virginia, United States

Time filter

Source Type

PubMed | a National Center for Cool and Cold Water Aquaculture
Type: Journal Article | Journal: Journal of aquatic animal health | Year: 2013

A challenge for improving disease resistance in fish through genetics is to understand specificity of resistance and whether selection for one pathogen alters the response to unrelated pathogenic microorganisms. Adult Rainbow Trout Oncorhynchus mykiss that had been bred for differential susceptibility to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and designated ARS-Fp-R (resistant), ARS-Fp-S (susceptible), and ARS-Fp-C (control line), as well as a pool of commercial-stock Rainbow Trout, were intraperitoneally challenged with Weissella sp. NC36. Clinical signs, survival, and innate mechanisms affecting disease resistance were monitored over 9 d. Acute disease signs included exophthalmia associated with retrobulbar inflammation and hemorrhage, cerebral hemorrhage, and mild to moderate granulomatous pericarditis. The ARS-Fp-R line did not demonstrate significant survival differences over a 9-d period compared with the ARS-Fp-C and ARS-Fp-S lines (P 0.09) indicating that during the acute phase of disease, the resistance factors that limit BCWD do not confer cross protection against Weissella sp. NC36. The linear effect of body weight at challenge was statistically significant, as each 10-g increase in body weight increased the hazard of death by 1% (P = 0.02). Bacterial loads on day 3, assessed by splenic and cerebral CFU counts, did not differ between ARS-Fp-R and ARS-Fp-S trout and there was no correlation between CFU counts and body weight. These findings help elucidate the specificity of disease resistance in selectively bred lines and contribute to our understanding of disease caused by Weissella sp., a recently described pathogen found in cultured Rainbow Trout.


PubMed | a National Center for Cool and Cold Water Aquaculture
Type: Journal Article | Journal: Journal of aquatic animal health | Year: 2014

Abstract A challenge to selectively breeding fish populations for improved disease resistance in aquaculture is an incomplete understanding of how artificial selection affects innate immunity at the host-pathogen level. The objective of this study was to determine whether Rainbow Trout Oncorhynchus mykiss bred for differential susceptibility to bacterial cold-water disease exhibited altered tissue damage and cellular inflammatory response following experimental challenge with Flavobacterium psychrophilum. Fish from disease-resistant (ARS-Fp-R) and disease-susceptible (ARS-Fp-S) lines were experimentally challenged as juveniles, and mortalities, as well as survivors, were sampled for histopathology during the acute phase of the disease. Microscopic lesions were quantified or semiquantified and statistically compared for changes over time and between genetic lines. Significant progression in the degree of perisplenitis, splenic necrosis, splenic inflammatory infiltrates, average splenic ellipsoid area, total splenic ellipsoid area, and peritonitis was present over time in both genetic lines on at least one postinfection time point. No differences were found between renal inflammatory infiltrates and renal hematopoietic cell depletion over time. Perisplenitis was significantly lower in fish from the ARS-Fp-R line on day 9 postinfection than in fish from the ARS-Fp-S line. The ARS-Fp-R line demonstrated a trend towards reduced splenic necrosis compared with the ARS-Fp-S line that approached significance, and fish from the ARS-Fp-S line were 3.6times more likely than fish from the ARS-Fp-R line to have a higher splenic necrosis lesion score after day 3 postinfection. These findings support the hypothesis that differential survival is a result of divergence in disease magnitude and not altered disease course between genetic lines. Characterization of histopathologic changes between genetic lines and over time helps elucidate mechanisms of disease resistance and contributes to our understanding of disease pathogenesis in fish infected with F. psychrophilum. Received January 7, 2014; accepted March 10, 2014.

Loading a National Center for Cool and Cold Water Aquaculture collaborators
Loading a National Center for Cool and Cold Water Aquaculture collaborators