Time filter

Source Type

Klingaman N.P.,National Center for Atmospheric Science Climate | Klingaman N.P.,University of Reading | Woolnough S.J.,National Center for Atmospheric Science Climate | Woolnough S.J.,University of Reading
International Journal of Climatology | Year: 2013

Queensland experiences considerable inter-annual and decadal rainfall variability, which impacts water-resource management, agriculture and infrastructure. To understand the mechanisms by which large-scale atmospheric and coupled air-sea processes drive these variations, empirical orthogonal teleconnection (EOT) analysis is applied to 1900-2010 seasonal Queensland rainfall. Fields from observations and the 20th Century Reanalysis are regressed onto the EOT timeseries to associate the EOTs with large-scale drivers. In winter, spring and summer the leading, state-wide EOTs are highly correlated with the El Niño-Southern Oscillation (ENSO); the Inter-decadal Pacific Oscillation modulates the summer ENSO teleconnection. In autumn, the leading EOT is associated with locally driven, late-season monsoon variations, while ENSO affects only tropical northern Queensland. Examining EOTs beyond the first, southeastern Queensland and the Cape York peninsula emerge as regions of coherent rainfall variability. In the southeast, rainfall anomalies respond to the strength and moisture content of onshore easterlies, controlled by Tasman Sea blocking. The summer EOT associated with onshore flow and blocking has been negative since 1970, consistent with the observed decline in rainfall along the heavily populated coast. The southeastern Queensland EOTs show considerable multi-decadal variability, which is independent of large-scale drivers. Summer rainfall in Cape York is associated with tropical-cyclone activity. © 2012 Royal Meteorological Society.

Abbatt J.P.D.,University of Toronto | Thomas J.L.,University of Versailles | Thomas J.L.,University of California at Los Angeles | Abrahamsson K.,Gothenburg University | And 13 more authors.
Atmospheric Chemistry and Physics | Year: 2012

The role of ice in the formation of chemically active halogens in the environment requires a full understanding because of its role in atmospheric chemistry, including controlling the regional atmospheric oxidizing capacity in specific situations. In particular, ice and snow are important for facilitating multiphase oxidative chemistry and as media upon which marine algae live. This paper reviews the nature of environmental ice substrates that participate in halogen chemistry, describes the reactions that occur on such substrates, presents the field evidence for ice-mediated halogen activation, summarizes our best understanding of ice-halogen activation mechanisms, and describes the current state of modeling these processes at different scales. Given the rapid pace of developments in the field, this paper largely addresses advances made in the past five years, with emphasis given to the polar boundary layer. The integrative nature of this field is highlighted in the presentation of work from the molecular to the regional scale, with a focus on understanding fundamental processes. This is essential for developing realistic parameterizations and descriptions of these processes for inclusion in larger scale models that are used to determine their regional and global impacts. © 2012.Author(s).

Dhomse S.S.,University of Leeds | Emmerson K.M.,CSIRO | Mann G.W.,University of Leeds | Mann G.W.,National Center for Atmospheric Science Climate | And 22 more authors.
Atmospheric Chemistry and Physics | Year: 2014

We use a stratosphere-troposphere composition-climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of the peak global stratospheric aerosol burden are in the range 19 to 26 Tg, or 3.7 to 6.7 Tg of sulfur assuming a composition of between 59 and 77 % H2SO4. In light of this large uncertainty range, we performed two main simulations with 10 and 20 Tg of SO2 injected into the tropical lower stratosphere. Simulated stratospheric aerosol properties through the 1991 to 1995 period are compared against a range of available satellite and in situ measurements. Stratospheric aerosol optical depth (sAOD) and effective radius from both simulations show good qualitative agreement with the observations, with the timing of peak sAOD and decay timescale matching well with the observations in the tropics and mid-latitudes. However, injecting 20 Tg gives a factor of 2 too high stratospheric aerosol mass burden compared to the satellite data, with consequent strong high biases in simulated sAOD and surface area density, with the 10 Tg injection in much better agreement. Our model cannot explain the large fraction of the injected sulfur that the satellite-derived SO2 and aerosol burdens indicate was removed within the first few months after the eruption. We suggest that either there is an additional alternative loss pathway for the SO2 not included in our model (e.g. via accommodation into ash or ice in the volcanic cloud) or that a larger proportion of the injected sulfur was removed via cross-tropopause transport than in our simulations.

We also critically evaluate the simulated evolution of the particle size distribution, comparing in detail to balloon-borne optical particle counter (OPC) measurements from Laramie, Wyoming, USA (41° N). Overall, the model captures remarkably well the complex variations in particle concentration profiles across the different OPC size channels. However, for the 19 to 27 km injection height-range used here, both runs have a modest high bias in the lowermost stratosphere for the finest particles (radii less than 250 nm), and the decay timescale is longer in the model for these particles, with a much later return to background conditions. Also, whereas the 10 Tg run compared best to the satellite measurements, a significant low bias is apparent in the coarser size channels in the volcanically perturbed lower stratosphere. Overall, our results suggest that, with appropriate calibration, aerosol microphysics models are capable of capturing the observed variation in particle size distribution in the stratosphere across both volcanically perturbed and quiescent conditions. Furthermore, additional sensitivity simulations suggest that predictions with the models are robust to uncertainties in sub-grid particle formation and nucleation rates in the stratosphere. © 2014 Author(s).

Yang X.,National Center for Atmospheric Science Climate | Yang X.,University of Cambridge | Yang X.,British Antarctic Survey | Abraham N.L.,National Center for Atmospheric Science Climate | And 13 more authors.
Atmospheric Chemistry and Physics | Year: 2014

Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry-climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4-6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30-40% when stratospheric Cly is ∼ 3 ppb (present day), compared with Cly of ∼ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6-8 years, depending on Cly levels. © 2014 Author(s).

Steptoe H.,University of Reading | Steptoe H.,UK Met Office | Wilcox L.J.,University of Reading | Wilcox L.J.,National Center for Atmospheric Science Climate | Highwood E.J.,University of Reading
Journal of Geophysical Research: Atmospheres | Year: 2016

Historical anthropogenic aerosol (AA) changes are found to have caused a statistically significant negative Southern Annular Mode (SAM) trend (associated with an equatorward jet shift) in 14 out of 35 individual ensemble members from the fifth Coupled Model Intercomparison Project (CMIP5) since 1860. However, this response is not robust. The significance of the SAM response to aerosol is model dependent and not simply related to aerosol forcing. Multiple sources of uncertainty result in a nonrobust response that means that the model mechanism connecting remote Northern Hemisphere AA forcing remains unclear. Analysis of single forcing experiments suggests that assuming the climate response to individual model forcings to be linearly additive cannot be made without proper assessment. Our results suggest that AAs may have had a historical influence on the SAM, but its influence may be overstated by assuming linearity. ©2016. American Geophysical Union. All Rights Reserved.

Wilcox L.J.,National Center for Atmospheric Science Climate | Wilcox L.J.,University of Reading | Highwood E.J.,University of Reading | Dunstone N.J.,UK Met Office
Environmental Research Letters | Year: 2013

Analysis of single forcing runs from CMIP5 (the fifth Coupled Model Intercomparison Project) simulations shows that the mid-twentieth century temperature hiatus, and the coincident decrease in precipitation, is likely to have been influenced strongly by anthropogenic aerosol forcing. Models that include a representation of the indirect effect of aerosol better reproduce inter-decadal variability in historical global-mean near-surface temperatures, particularly the cooling in the 1950s and 1960s, compared to models with representation of the aerosol direct effect only. Models with the indirect effect also show a more pronounced decrease in precipitation during this period, which is in better agreement with observations, and greater inter-decadal variability in the inter-hemispheric temperature difference. This study demonstrates the importance of representing aerosols, and their indirect effects, in general circulation models, and suggests that inter-model diversity in aerosol burden and representation of aerosol-cloud interaction can produce substantial variation in simulations of climate variability on multi-decadal timescales. © 2013 IOP Publishing Ltd.

Tegtmeier S.,Leibniz Institute of Marine Science | Kruger K.,Leibniz Institute of Marine Science | Quack B.,Leibniz Institute of Marine Science | Atlas E.L.,University of Miami | And 4 more authors.
Atmospheric Chemistry and Physics | Year: 2012

Oceanic emissions of halogenated very short-lived substances (VSLS) are expected to contribute significantly to the stratospheric halogen loading and therefore to ozone depletion. The amount of VSLS transported into the stratosphere is estimated based on in-situ observations around the tropical tropopause layer (TTL) and on modeling studies which mostly use prescribed global emission scenarios to reproduce observed atmospheric concentrations. In addition to upper-air VSLS measurements, direct observations of oceanic VSLS emissions are available along ship cruise tracks. Here we use such in-situ observations of VSLS emissions from the West Pacific and tropical Atlantic together with an atmospheric Lagrangian transport model to estimate the direct contribution of bromoform (CHBr3), and dibromomethane (CH2Br 2) to the stratospheric bromine loading as well as their ozone depletion potential. Our emission-based estimates of VSLS profiles are compared to upper-air observations and thus link observed oceanic emissions and in situ TTL measurements. This comparison determines how VSLS emissions and transport in the cruise track regions contribute to global upper-air VSLS estimates. The West Pacific emission-based profiles and the global upper-air observations of CHBr3 show a relatively good agreement indicating that emissions from the West Pacific provide an average contribution to the global CHBr3 budget. The tropical Atlantic, although also being a CHBr3 source region, is of less importance for global upper-air CHBr3 estimates as revealed by the small emission-based abundances in the TTL. Western Pacific CH2Br2 emission-based estimates are considerably smaller than upper-air observations as a result of the relatively low sea-to-air flux found in the West Pacific. Together, CHBr3 and CH2Br2 emissions from the West Pacific are projected to contribute to the stratospheric bromine budget with 0.4 pptv Br on average and 2.3 pptv Br for cases of maximum emissions through product and source gas injection. These relatively low estimates reveal that the tropical West Pacific, although characterized by strong convective transport, might overall contribute less VSLS to the stratospheric bromine budget than other regions as a result of only low CH2Br2 and moderate CHBr3 oceanic emissions.© Author(s) 2012.

Loading National Center for Atmospheric Science Climate collaborators
Loading National Center for Atmospheric Science Climate collaborators