National Cardiology Research Center

Moscow, Russia

National Cardiology Research Center

Moscow, Russia
Time filter
Source Type

Morecroft I.,University of Glasgow | White K.,University of Glasgow | Caruso P.,University of Glasgow | Nilsen M.,University of Glasgow | And 7 more authors.
Molecular Therapy | Year: 2012

Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. © The American Society of Gene & Cell Therapy.

PubMed | Polenov Institute of Neurosurgery, Cord Blood Bank CryoCenter and National Cardiology Research Center
Type: Journal Article | Journal: Cytotherapy | Year: 2015

The term cerebral palsy (CP) encompasses many syndromes that emerge from brain damage at early stages of ontogenesis and manifest as the inability to retain a normal body position or perform controlled movements. Existing methods of CP treatment, including various rehabilitation strategies and surgical and pharmacological interventions, are mostly palliative, and there is no specific therapy focused on restoring injured brain function.During a post-registration clinical investigation, the safety and efficacy of intravenous infusion of allogeneic human leukocyte antigen (HLA)-unmatched umbilical cord blood (UCB) cells were studied in 80 pediatric patients with cerebral palsy and associated neurological complications. Patients received up to 6 intravenous infusions of AB0/Rh-identical, red blood cell-depleted UCB cells at an average dose of 250 10(6) viable cells per infusion.Patients were followed for 3-36 months, and multiple cell infusions did not cause any adverse effects. In contrast, in most patients who received four or more UCB cell infusions, positive dynamics related to significant improvements in neurological status and/or cognitive functions were observed.The results confirm that multiple intravenous infusions of allogeneic AB0/Rh-identical UCB cells may be a safe and effective procedure and could be included in treatment and rehabilitation programs for juvenile patients with cerebral palsy.

Head G.A.,Baker IDI Heart and Diabetes Institute | Chatzivlastou K.,Baker IDI Heart and Diabetes Institute | Lukoshkova E.V.,National Cardiology Research Center | Jennings G.L.,Baker IDI Heart and Diabetes Institute | Reid C.M.,Monash University
American Journal of Hypertension | Year: 2010

Background: We defined a new measure of the morning blood pressure (BP) surge (MBPS) that is derived by the product of the rate of morning rise (RoR) and the amplitude (day-night difference) giving an effective Power of the BP rise (BP Power). We applied this method to determine whether morning BP Power is different in hypertensives compared to normotensives, males compared to females or altered by antihypertensive treatment. Methods BP Power, RoR, and day-night amplitude were calculated using a double logistic fit of 691 ambulatory recordings.ResultsAmbulatory recordings from untreated male and female subjects showed that upper quartile (distributed by day BP, n = 100) had a 92% greater BP Power (P 0.001) than the lower quartile subjects (n = 100) due to both a faster RoR and greater amplitude. Males had a 29% greater BP Power than females (P = 0.003). Untreated hypertensives and white coat hypertensives showed a greater morning BP Power (158% and 86%, respectively) compared to matched normotensives. Subjects taking calcium channel blockers and diuretics alone or in combination with angiotensin receptor blockers had lower morning BP Power than those on angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor antagonists alone.ConclusionsA new measure of the MBPS, BP Power which is based on a mathematical estimate of the rate and amplitude of the rise, is higher in hypertensives, white coat hypertensives, and is modifiable by some specific antihypertensive therapies suggests that it may be theoretically useful to highlight those subjects at greatest risk of cardiovascular events and for determining the most benefit of antihypertensive therapy. © 2010 American Journal of Hypertension, Ltd.

Burke S.L.,Baker IDI Heart and Diabetes Institute | Prior L.J.,Baker IDI Heart and Diabetes Institute | Lukoshkova E.V.,National Cardiology Research Center | Lim K.,Baker IDI Heart and Diabetes Institute | And 6 more authors.
Chronobiology International | Year: 2013

Consumption of a high-fat diet (HFD) by rabbits results in increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) within 1 wk. Here, we determined how early this activation occurred and whether it was related to changes in cardiovascular and neural 24-h rhythms. Rabbits were meal-fed a HFD for 3 wks, then a normal-fat diet (NFD) for 1 wk. BP, HR, and RSNA were measured daily in the home cage via implanted telemeters. Baseline BP, HR, and RSNA over 24 h were 71 ± 1 mm Hg, 205 ± 4 beats/min and 7 ± 1 normalized units (nu). The 24-h pattern was entrained to the feeding cycle and values increased from preprandial minimum to postprandial maximum by 4 ± 1 mm Hg, 51 ± 6 beats/min, and 1.6 ± .6 nu each day. Feeding of a HFD markedly diminished the preprandial dip after 2 d (79-125% of control; p < 0.05) and this reduction lasted for 3 wks of HFD. Twenty-four-hour BP, HR, and RSNA concurrently increased by 2%, 18%, and 22%, respectively. Loss of preprandial dipping accounted for all of the BP increase and 50% of the RSNA increase over 3 wks and the 24-h rhythm became entrained to the light-dark cycle. Resumption of a NFD did not alter the BP preprandial dip. Thus, elevated BP induced by a HFD and mediated by increased sympathetic nerve activity results from a reduction in preprandial dipping, from the first day. Increased calories, glucose, insulin, and leptin may account for early changes, whereas long-term loss of dipping may be related to increased sensitivity of sympathetic pathways. © Informa Healthcare USA, Inc.

Carnevali L.,University of Parma | Bondarenko E.,University of Newcastle | Sgoifo A.,University of Parma | Walker F.R.,University of Newcastle | And 4 more authors.
American Journal of Physiology - Regulatory Integrative and Comparative Physiology | Year: 2011

In humans, chronic stressors have long been recognized as potential causes for cardiac dysregulation. Despite this, the underlying mechanistic links responsible for this association are still poorly understood. The purpose of this study was to determine whether exposure to a paradigm of subchronic stress can provoke enduring changes on the heart rate of experimental rats and, if so, to reveal the autonomic and neural mechanisms that mediate these effects. The study was conducted on adult male Sprague-Dawley rats instrumented for telemetric recording of heart rate and locomotor activity. Animals were submitted to a subchronic stress protocol, consisting of a 1-h foot shock session on five consecutive days. Heart rate and locomotor activity were recorded continuously for 3 days before and for 6 days after the subchronic stress period. Subchronic foot shock produced significant and enduring reduction in heart rate both during the dark/active [Δ= -23 ± 3 beats per minute (bpm)] and light/inactive (Δ= -20 ± 3 bpm) phases of the circadian cycle, and a reduction in locomotor activity during the dark/active phase [Δ= -54 ± 6 counts per hour (cph)]. The bradycardic effect of subchronic stress was not related to a reduced locomotion. Selective sympathetic (atenolol) and vagal (methylscopolamine) blockades were performed to reveal which autonomic component was responsible for this effect. We found that the fall in heart rate persisted after subchronic stress in animals treated with atenolol (active phase Δ= -16 ±3 bpm, inactive phase Δ= -19 ±2 bpm), whereas vagal blockade with scopolamine transiently prevented this effect, suggesting that the bradycardia following subchronic stress was predominantly vagally mediated. Fluoxetine (selective serotonin reuptake inhibitor) and metyrapone (inhibitor of corticosterone synthesis) treatments did not affect heart rate changes but prevented the reduction in locomotion. We conclude that subchronic stress exposure in rats reduces heart rate via a rebound in vagal activation and that this effect is serotonin- and corticosteroneindependent. © 2011 the American Physiological Society.

Veloudi P.,University of Tasmania | Blizzard L.,University of Tasmania | Srikanth V.K.,University of Tasmania | Srikanth V.K.,Monash Medical Center | And 5 more authors.
Diabetes and Vascular Disease Research | Year: 2016

Blood pressure variability is associated with macrovascular complications and stroke, but its association with the microcirculation in type II diabetes has not been assessed. This study aimed to determine the relationship between blood pressure variability indices and retinal arteriolar diameter in non-diabetic and type II diabetes participants. Digitized retinal images were analysed to quantify arteriolar diameters in 35 non-diabetic (aged 52 ± 11 years; 49% male) and 28 type II diabetes (aged 61 ± 9 years; 50% male) participants. Blood pressure variability was derived from 24-h ambulatory blood pressure. Arteriolar diameter was positively associated with daytime rate of systolic blood pressure variation (p = 0.04) among type II diabetes participants and negatively among non-diabetics (p = 0.008; interaction p = 0.001). This finding was maintained after adjusting for age, sex, body mass index and mean daytime systolic blood pressure. These findings suggest that the blood pressure variability-related mechanisms underlying retinal vascular disease may differ between people with and without type II diabetes. © SAGE Publications.

Gordon K.,University of Cape Town | Balyasnikova I.V.,University of Illinois at Chicago | Balyasnikova I.V.,University of Chicago | Nesterovitch A.B.,University of Illinois at Chicago | And 4 more authors.
Tissue Antigens | Year: 2010

A panel of monoclonal antibodies (mAbs) raised against both the N and C domains of angiotensin-I-converting enzyme (ACE, peptidyl dipeptidase, EC have been extensively mapped and have facilitated the study of various aspects of ACE structure and biology. In this study, we characterize two mAbs, 9B9 and 3G8, that recognize the N domain of ACE and that influence shedding and dimerization. Fine epitope mapping was performed, which mapped the epitopes for these mAbs to the N terminal region of the N domain where they overlap to a large extent, despite having different effects on ACE processing. The mAb 3G8 epitope appears to be shielded by the C domain and to be carbohydrate dependent as binding increased significantly as a result of underglycosylation, whereas these factors did not influence mAb 9B9 recognition. Three mutations within the overlapping region of these two epitopes, Q18H, L19E, and Q22A, which decreased mAb 3G8 binding to the soluble N domain, were introduced into full-length somatic ACE (sACE) to determine their influence on ACE expression and processing. Increased ACE expression, cell surface expression, and basal shedding were observed with all three mutations. Furthermore, cross-linking and western blotting of Chinese hamster ovary (CHO) cell lysates detected two distinct ACE dimers, a native and cross-linked dimer. Increasing amounts of the cross-linked dimer were observed for the mutant sACEQ22A, further implicating the overlapping region of the mAb 9B9 and 3G8 epitopes in ACE processing. © 2009 John Wiley & Sons A/S.

Danilov S.M.,University of Illinois at Chicago | Danilov S.M.,National Cardiology Research Center | Kalinin S.,University of Illinois at Chicago | Chen Z.,University of Illinois at Chicago | And 6 more authors.
PLoS ONE | Year: 2010

Background: Angiotensin-converting enzyme (ACE; Kininase II; CD143) hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD), a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death. Methodology/Principal Findings: Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R) resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT) vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10-20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate) or pharmacological (ACE inhibitor) chaperones with proteasome inhibitors (MG 132 or bortezomib) significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold. Conclusions/Significance: Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as concentration of primary urine. © 2010 Danilov et al.

Metzger R.,University of Leipzig | Franke F.E.,Justus Liebig University | Bohle R.M.,Saarland University | Alhenc-Gelas F.,University of Paris Descartes | And 2 more authors.
Microvascular Research | Year: 2011

Angiotensin I-converting enzyme (kininase II, ACE, CD143) availability is a determinant of local angiotensin and kinin concentrations and physiological actions. Limited information is available on ACE synthesis in peripheral vascular beds. We studied the distribution of ACE along the human and rat vascular tree, and determined whether the enzyme was uniformly distributed in all endothelial cells (EC) or if differences occurred among vessels and organs.The distribution of ACE was assessed by using a panel of anti-human ACE monoclonal antibodies and serial sections of the entire vascular tree of humans. Comparison was made with other EC markers. EC of small muscular arteries and arterioles displayed high ACE immunoreactivity in all organs studied except the kidney, while EC of large arteries and of veins were poorly reactive or completely negative. Only 20% on average of capillary EC in each organ, including the heart, stained for ACE, with the remarkable exception of the lung and kidney. In the lung all capillary EC were labeled intensively for ACE, whereas in the kidney the entire vasculature was devoid of detectable enzyme. In contrast to the man, the rat showed homogeneous endothelial expression of ACE in all large and middle-sized arteries, and in veins, but in renal vessels ACE expression was reduced.This study documents a vessel, organ and species specific pattern of distribution of endothelial ACE. The markedly reduced ACE content of the renal vasculature may protect the renal circulation against excess angiotensin II formation and kinin depletion, and maintain high renal blood flow. © 2010 Elsevier Inc.

Petrov M.N.,Moscow State University | Shilo V.Y.,Moscow University for Medicine and Dentistry | Tarasov A.V.,Moscow State University | Schwartz D.E.,University of Illinois at Chicago | And 4 more authors.
PLoS ONE | Year: 2012

Background: The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis: Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings: The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The "short" ACE inhibitor enalaprilat (tripeptide analog) and "long" inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance: The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy. © 2012 Petrov et al.

Loading National Cardiology Research Center collaborators
Loading National Cardiology Research Center collaborators