National Cancer InstituteBethesda Maryland

National Cancer InstituteBethesda Maryland

SEARCH FILTERS
Time filter
Source Type

Hakimi A.A.,Memorial Sloan Kettering Cancer CenterNew York New York | Ostrovnaya I.,Memorial Sloan Kettering Cancer CenterNew York New York | Jacobsen A.,Memorial Sloan Kettering Cancer CenterNew York New York | Susztak K.,University of Pennsylvania | And 13 more authors.
Cancer | Year: 2015

BACKGROUND: The exonic single-nucleotide variant rs11762213 located in the MET oncogene has recently been identified as a prognostic marker in clear cell renal cell carcinoma (ccRCC). This finding was validated with The Cancer Genome Atlas (TCGA) cohort, and the biologic implications were explored. METHODS: The genotype status for rs11762213 was available for 272 patients. Paired tumor-normal data, genomic data, and clinical information were acquired from ccRCC TCGA data sets. Cancer-specific survival (CSS) was analyzed with the competing risk method, and Cox proportional hazards regression was used for the analysis of the time to recurrence (TTR). Multivariate competing risk models were fitted to adjust for the validated Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score. RESULTS: The variant allele of rs11762213 was detected in 10.3% of the cohort. After adjustments for the SSIGN score, the risk allele remained a significant predictor for adverse CSS (hazard ratio [HR], 3.88; 95% confidence interval [CI], 1.99-7.56; P<.0001) and for TTR (OR, 2.97; 95% CI, 1.43-6.2; P=.003). The mapping of rs11762213 to regulatory regions within the genome suggested that it might affect a DNA enhancer region. RNA and protein sequencing data for MET did not reveal differences in steady-state expression with stratification by risk allele. CONCLUSIONS: The exonic MET variant rs11762213 is an independent predictor of adverse CSS and TTR in ccRCC and should be integrated into clinical practice for prognostic stratification. Genomic analysis suggests that the single-nucleotide polymorphism may affect an enhancer region located in the coding region of MET. Further biological mechanistic interrogation is currently underway. © 2015 American Cancer Society.


Harris P.,National Cancer InstituteBethesda Maryland | Ivy S.P.,National Cancer InstituteBethesda Maryland
Cancer | Year: 2016

BACKGROUND: Dermatologic adverse events (AEs) can be key determinants of overall drug tolerability and of the maximum tolerated and recommended phase 2 doses in phase 1 trials. The authors present the largest dedicated analysis of dermatologic AEs on phase 1 trials to date. METHODS: Data from a prospectively maintained database of patients with solid tumors who were enrolled onto Cancer Therapeutics Evaluation Program (CTEP)-sponsored phase 1 trials of cytotoxic or molecularly targeted agents (MTAs) from 2000 to 2010 were analyzed. Cumulative incidence, site, and type of drug-related dermatologic AEs were described and compared. The timing of worst drug-related dermatologic AEs was summarized. RESULTS: In total, 3517 patients with solid tumors and 6165 unique, drug-related dermatologic AEs were analyzed, including 1545 patients on MTA-only trials, 671 on cytotoxic-only trials, and 1392 on combination MTA and cytotoxic trials. Of 1270 patients who had drug-related dermatologic events, the timing of the worst AE was as follows: 743 (cycle 1), 303 (cycle 2), and 224 (cycle 3 or later). Although the cumulative incidence of grade ≥3 drug-related AEs increased to 2.4% by cycle 6, it was only 1.6% at the end of cycle 1. The cumulative incidence of drug-related AEs was highest in patients who received MTA-only therapy (P<.001) and differed by dose level (P<.001). In patients who received MTA-only therapy, drug-related AEs were most common for combination kinase inhibitor-containing therapy (P<.001). CONCLUSIONS: A substantial proportion of drug-related dermatologic AEs occur after the traditional dose-limiting toxicity monitoring period of phase 1 clinical trials. Future designs should account for late toxicities. © 2016 American Cancer Society.

Loading National Cancer InstituteBethesda Maryland collaborators
Loading National Cancer InstituteBethesda Maryland collaborators