National Autonomous University of Mexico
Mexico City, Mexico

The Universidad Nacional Autónoma de México is a public research university in Mexico City, Mexico that is the largest university in Latin America. UNAM was founded, in its modern form, on 22 September 1910 by Justo Sierra as a liberal alternative to its preceding institution the Royal and Pontifical University of Mexico . To this date, the National Autonomous University of Mexico owns and uses for academic activities the old buildings located in downtown Mexico City that once belonged to the old Royal and Pontifical University of Mexico UNAM's autonomy, granted in 1929, has given it the freedom to define its own curriculum and manage its own budget without interference from the government. This has had a profound effect on academic life at the university, which some claim boosts academic freedom and independence.The UNAM generates a number of different publications in diverse areas, such as mathematics, physics and history. It is also the only university in Mexico with Nobel Prize laureates among its alumni: Alfonso García Robles , Octavio Paz , and Mario Molina .Besides being the most recognized university in Latin America, its campus is one of the largest and most artistically detailed. It is a World Heritage site that was designed by some of Mexico's best-known architects of the 20th century. Murals in the main campus were painted by some of the most recognized artists in Mexican history such as Diego Rivera and David Alfaro Siqueiros. The UNAM is widely regarded by many university world rankings as the leading university of the Spanish-speaking world. Wikipedia.

Time filter
Source Type

News Article | April 17, 2017

Some concerns have been voiced over the way in which a clinic last year created the first three-parent baby born using a new technique. The baby’s birth was exclusively revealed by New Scientist in 2016. John Zhang of the New Hope Fertility Center in New York and his team used a form of mitochondrial replacement therapy to help a woman have a baby without passing on a serious genetic disease carried in the DNA of her mitochondria, the compartments that generate energy in our cells. The method involves placing the DNA from one woman into a donated egg from another, and then fertilising it with sperm. Because the egg contains some mitochondrial DNA from the donor, babies made this way carry genetic material from three different people. The team has now published an account of this procedure and the resulting baby’s health in a peer-reviewed journal, Reproductive BioMedicine Online. It reveals that, seven months after birth, the boy remains healthy, showing no signs of Leigh syndrome – a condition that killed two of his older siblings. But some researchers are raising concerns over the procedural paperwork associated with the treatment. An accompanying editorial written by five researchers on the Reproductive BioMedicine Online editorial board describes Zhang’s work as “an achievement and stepping stone”, but points out that the consent form signed by the woman having the baby did not list the specific risks of mitochondrial replacement. “The authors explain that the patient received extensive counselling over the course of several years, but the final consent form does not record this,” says the editorial. And the woman who donated an egg for the therapy, enabling the mother to have a child that carries someone else’s mitochondria, signed a standard egg donor consent form. “A copy of this form received by Reproductive BioMedicine Online shows that the use of the donated eggs specifically for spindle transfer (for MRT) is not mentioned,” the editorial says. The embryo was created in New York, but Zhang’s team implanted it in the woman’s uterus in Mexico. The editorial states that the team had approval from the Mexican clinic’s Internal Review Board to do this, but had not applied for Internal Review Board approval for the work at the New York clinic. “The editorial is detailed in its criticism,” Darren Griffin, at the University of Kent, UK, said in a statement to the UK Science Media Centre. Criticism of the procedure followed has also come from a paper published in the Journal of Law and the Biosciences on 23 March, before Zhang’s study was released. The paper’s authors, César Palacios-González at King’s College London and María de Jesús Medina-Arellano at the National Autonomous University of Mexico, wrote that under their interpretation of the law, and with the information available at the time of publication of their paper, federal regulations may have been breached in Mexico that govern research into assisted fertilisation. New Scientist was not able to reach Zhang for comment. The study from Zhang and his colleagues reveals that some of the mother’s mitochondrial DNA has been passed on to her baby. This is likely to occur to some degree during the procedure that removes the nucleus from her egg, ready for inserting into a donor egg. It seems that about 5 per cent of the mitochondrial DNA in the embryo came from the mother in this way. It is anticipated that this will not be enough for the boy to develop Leigh syndrome. Some studies suggest faulty DNA needs to exceed at least 60 per cent for this to occur. In his mother’s own cells, 34 per cent of her mitochondria carry the faulty DNA, and she has never shown any symptoms of the disease. “They only had one normal-looking embryo that could be transferred to the patient,” Robin Lovell-Badge of the Francis Crick Institute in London told the Science Media Centre. “They were lucky this was indeed normal, giving rise to a pregnancy, and they were lucky that the proportion of abnormal mitochondrial DNA remained relatively low in most tissues.” But Zhang’s team warns of the potential risk that the mother’s faulty DNA will “bounce back” in the boy, saying it’s crucial for him to be monitored for many years. Some researchers are concerned that the percentage of faulty DNA after mitochondrial replacement might increase over time. Symptoms of Leigh syndrome are normally spotted in the first year of life and death usually results after just a couple of years, and at present the boy is just seven months old. Since the birth of the boy described in the team’s paper, other three-parent babies have been made and born elsewhere. A clinic in Ukraine has told New Scientist that the second of two three-parent-babies created using a different technique in order to overcome infertility has been born. The boy was born on 19 February, following the birth of a girl in January. The clinic says both are healthy, but few further details are available yet. Journal of Law and the Biosciences, DOI: 10.1093/jlb/lsw065 (legal study)

News Article | May 24, 2017

EDMONTON, ALBERTA--(Marketwired - May 24, 2017) - Altiplano Minerals Ltd. (TSX VENTURE:APN) ("APN" or the "Company") is pleased to announce the appointment of Osbaldo Zamora Vega as VP, Exploration. Mr. Zamora has a B.Sc. in Geology from the Autonomous University of San Luis Potosi, Mexico, an M.Sc. in Geochemistry from the National Autonomous University of Mexico, and is currently a Ph.D. candidate in Economic Geology at the University of Alberta. He is conducting research on ore-formation processes in the Zacatecas Mining District, Mexico, a world-class silver mining district. Mr. Zamora has 17 years of geological experience that ranges from precious metals exploration to mining, has worked for major companies such as PENOLES and Mauricio Hochschild as an exploration geologist, and participated actively in a drilling program that lead to the discovery of the Pinos Altos mine. He worked at La Cienega mine, a FRESNILLO PLC underground mine operation, performing underground mapping, grade control, planning and supervision of drilling programs, core logging, geological modeling, and reserve estimation. Additionally, he also has worked for junior companies including Continuum Resources Mexico in Oaxaca, Mexico, North Country Gold at the Three Bluffs project in Nunavut, Canada, and recently, for Altiplano Minerals Ltd on the generation of new projects. CEO John Williamson stated, "I am very pleased to have Osbaldo join the Altiplano team as I have worked with him since 2010 on various projects (including Brilliant Mining's projects in Africa) and can attest to his strength of character, work ethic and ability to add value to all projects that he collaborates on. Importantly, he is able to maintain a balance between the science of geology and business which is an important balance to achieve when evaluating and advancing projects." Altiplano Minerals Ltd. (TSX VENTURE:APN) is a mineral exploration company focused on evaluating and acquiring projects with significant potential for advancement from discovery through to production, in Canada and abroad. Management has a substantial record of success in capitalizing opportunity, overcoming challenges and building shareholder value. Additional information concerning Altiplano can be found on its website at ON BEHALF OF THE BOARD Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the (TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. This release includes certain statements that may be deemed "forward-looking statements". All statements in this release, other than statements of historical facts, that address exploration drilling, exploitation activities and events or developments that the Company expects are forward-looking statements. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in the forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include market prices, exploitation and exploration successes, continuity of mineralization, uncertainties related to the ability to obtain necessary permits, licenses and title and delays due to third party opposition, changes in government policies regarding mining and natural resource exploration and exploitation, and continued availability of capital and financing, and general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. For more information on the Company, investors should review the Company's continuous disclosure filings that are available at

News Article | May 23, 2017

Scientists from the University of Milano (Italy), the National Autonomous University of Mexico, the Institute of Catalysis and Petrochemistry of Madrid (Spain) and the University of Porto (Portugal) took part in the study. The research outcomes have been published in Current Organic Synthesis this May. "Today the production of biofuels is an important area in many countries. They can be obtained from a great variety of biomasses. In Latin America, sources include orange and tangerine peel as well as banana skin. In the U.S., biofuels are produced from corn; in the central part of Russia and Europe, sources are derived from rape (Brassica napus). When processing these plants into biofuels, a large amount of glycerol is formed. Its esters constitute the basis of oils and fats. Glycerol is widely used in the cosmetics industry as an individual product. However, much more glycerol is obtained in the production of biofuels – many thousands of tons a year. As a result, unused glycerol merely becomes waste," says Alexey Pestryakov, the Head of the Department of Physical and Analytical Chemistry. "Now, a lot of research groups are engaged in this issue as to how to transform excess glycerol into other useful products. Along with our foreign colleagues, we offered catalysts based on gold nanoparticles." The authors of the research note that catalytic oxidation on gold is one of the most effective techniques to obtain from glycerol such useful products as aldehydes, esters, carboxylic acids and other substances. "All these substances are products of fine organic chemistry and are in demand in a wide range of industries, particularly in the pharmaceutical and cosmetic industries. In agriculture, they are applied as part of different feed additives, veterinary drugs, fertilizers, plant treatment products, etc. Thus, unused glycerol after being processed will further be applied," says Alexey Pestryakov. Gold catalysts are super active. They can enter into chemical reactions with other substances at room temperature (other catalysts need to be heated), in some cases, even under zero degrees. However, gold can be a catalyst only at the nanolevel. "In a piece of gold, there will be no chemical reaction. In order to make gold become chemically active, the size of the particles should be less than two nanometers. At that scale, it has amazing properties," says the scientist. "A great challenge in this area is that gold catalysts are very rapidly deactivated, not only during work, but even during storage. Our objective is to ensure their longer shelf life. It is also important to use oxygen as an oxidizer, since toxic and corrosive peroxide compounds are often used for such purposes," says Alexey Petryakov. More information: Mario Farías et al. More Insights into Support and Preparation Method Effects in Gold Catalyzed Glycerol Oxidation, Current Organic Synthesis (2017). DOI: 10.2174/1570179413666161031114833

National Autonomous University of Mexico | Date: 2015-09-25

The present invention provides osteogenic peptides derived from the Cementum-derived attachment protein (HACD1/CAP) and another derived from the Cementum Protein 1 (CEMP1) and pharmaceutical compositions of these peptides for the prevention and treatment of osteopenia and osteoporosis. These peptides increase bone mineral density in an osteoporotic model and without in vivo side effects, demonstrating clinical effectiveness in the prevention and treatment of osteopenia and osteoporosis in vivo as well as bone repair and/or regeneration.

National Autonomous University of Mexico | Date: 2015-03-25

The present invention specifically refers to a pharmaceutical system for preparation of solid pharmaceutical forms for administering therapeutic substances improving their bioavailability; said system is particularly suitable for administering sensitive active principles by their proteinaceous nature or by being nucleic acids since polymeric excipients with good matrix and bioadhesion properties are used which together with the impermeability conferred by the applied coating make the prepared system a delivery form with excellent performance.

Merchant H.,National Autonomous University of Mexico | Harrington D.L.,VA San Diego Healthcare System | Harrington D.L.,University of California at San Diego | Meck W.H.,Duke University
Annual Review of Neuroscience | Year: 2013

Understanding how sensory and motor processes are temporally integrated to control behavior in the hundredths of milliseconds-to-minutes range is a fascinating problem given that the basic electrophysiological properties of neurons operate on a millisecond timescale. Single-unit recording studies in monkeys have identified localized timing circuits, whereas neuropsychological studies of humans who have damage to the basal ganglia have indicated that core structures, such as the cortico-thalamic-basal ganglia circuit, play an important role in timing and time perception. Taken together, these data suggest that a core timing mechanism interacts with context-dependent areas. This idea of a temporal hub with a distributed network is used to investigate the abstract properties of interval tuning as well as temporal illusions and intersensory timing. We conclude by proposing that the interconnections built into this core timing mechanism are designed to provide a form of degeneracy as protection against injury, disease, or age-related decline. Copyright ©2013 by Annual Reviews. All rights reserved.

Harmony T.,National Autonomous University of Mexico
Frontiers in Integrative Neuroscience | Year: 2013

Ample evidence suggests that electroencephalographic (EEG) oscillatory activity is linked to a broad variety of perceptual, sensorimotor, and cognitive operations. However, few studies have investigated the delta band (0.5-3.5 Hz) during different cognitive processes. The aim of this review is to present data and propose the hypothesis that sustained delta oscillations inhibit interferences that may affect the performance of mental tasks, possibly by modulating the activity of those networks that should be inactive to accomplish the task. It is clear that two functionally distinct and potentially competing brain networks can be broadly distinguished by their contrasting roles in attention to the external world vs. the internally directed mentation or concentration. During concentration, EEG delta (1-3.5 Hz) activity increases mainly in frontal leads in different tasks: mental calculation, semantic tasks, and the Sternberg paradigm. This last task is considered a working memory task, but in neural, as well as phenomenological, terms, working memory can be best understood as attention focused on an internal representation. In the Sternberg task, increases in power in the frequencies from 1 to 3.90 Hz in frontal regions are reported. In a Go/No-Go task, power increases at 1 Hz in both conditions were observed during 100-300 ms in central, parietal and temporal regions. However, in the No-Go condition, power increases were also observed in frontal regions, suggesting its participation in the inhibition of the motor response. Increases in delta power were also reported during semantic tasks in children. In conclusion, the results suggest that power increases of delta frequencies during mental tasks are associated with functional cortical deafferentation, or inhibition of the sensory afferences that interfere with internal concentration. These inhibitory oscillations would modulate the activity of those networks that should be inactive to accomplish the task. © 2013 Harmony.

Bermudez-Rattoni F.,National Autonomous University of Mexico
Neurobiology of Learning and Memory | Year: 2014

For a long time, the insular cortex (IC) has been related with taste physiology and taste memory processes in animal studies. Recently, the role of the IC has been highlighted by findings involving the IC in non-taste memory formation in both human and animal studies. Recognition memory is based on the ability to assess the familiarity of a previously encountered stimulus, and it is considered a form of declarative memory. In this work, I am proposing that the IC and its related circuitry are highly involved in the conversion of novel to familiar stimulus for both object and taste recognition memory. In addition, I will review some of the molecular mechanisms involved in the modification of novelty to familiarity memory processes, including the role of epigenetic mechanisms on the consolidation of recognition memory within the IC. In the second part of the paper, I will review some of the possible mechanisms to transform a novel taste into a familiar aversive taste by a functional interaction between the IC and the amygdala. In summary, the IC is an important area that will open a new avenue for the study of the mechanisms involved in the neurobiology of learning and memory in the near future. © 2014 Elsevier Inc.

Magallon S.,National Autonomous University of Mexico
Systematic Biology | Year: 2010

Long branches are potentially problematic in molecular dating because they can encompass a vast number of combinations of substitution rate and time. A long branch is suspected to have biased molecular clock estimates of the age of flowering plants (angiosperms) to be much older than their earliest fossils. This study explores the effect of the long branch subtending angiosperms in molecular dating and how different relaxed clocks react to it. Fossil angiosperm relatives, identified through a combined morphological and molecular phylogenetic analysis for living and fossil seed plants, were used to break the long angiosperm stem branch. Nucleotide sequences of angiosperm fossil relatives were simulated using a phylogeny and model parameters from living taxa and incorporated in molecular dating. Three relaxed clocks, which implement among-lineage rate heterogeneity differently, were used: penalized likelihood (using 2 different rate smoothing optimization criteria), a Bayesian rate-autocorrelated method, and a Bayesian uncorrelated method. Different clocks provided highly correlated ages across the tree. Breaking the angiosperm stem branch did not result in major age differences, except for a few sensitive nodes. Breaking the angiosperm stem branch resulted in a substantially younger age for crown angiosperms only with 1 of the 4 methods, but, nevertheless, the obtained age is considerably older than the oldest angiosperm fossils. The origin of crown angiosperms is estimated between the Upper Triassic and the early Permian. The difficulty in estimating crown angiosperm age probably lies in a combination of intrinsic and extrinsic complicating factors, including substantial molecular rate heterogeneity among lineages and through time. A more adequate molecular dating approach might combine moderate background rate heterogeneity with large changes in rate at particular points in the tree. © The Author(s) 2010.

Olson M.E.,National Autonomous University of Mexico
Trends in Ecology and Evolution | Year: 2012

From an adaptation perspective, unoccupied patches of morphological space are inferred to be empty because they are of low fitness and selected against. These inferences hinge on venturesome assumptions, because emptiness is explained by low fitness and low fitness is inferred from emptiness. Moreover, non-adaptive factors, such as developmental constraint, could also plausibly account for empty morphospace. In response, biologists increasingly study ontogeny to test the assumption that unobserved phenotypes could be produced if selection were to favor them; finding that empty space morphologies can be readily produced in development helps reject constraint and lends support to adaptive hypotheses. This developmental approach to adaptation calls on manifold techniques, including embryology, artificial selection and comparative methods. Belying their diversity, all of these methods examine the causes of empty morphospace and mark a return of development, long excluded from traditional evolutionary biology, to adaptationist practice. © 2012 Elsevier Ltd.

Loading National Autonomous University of Mexico collaborators
Loading National Autonomous University of Mexico collaborators