Time filter

Source Type

Gabr S.,National Authority for Remote Sensing and Space science | Gabr S.,Saint Louis University | Ghulam A.,Saint Louis University | Kusky T.,China Three Gorges University
Ore Geology Reviews | Year: 2010

Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting and locating alteration zones that are related to gold deposits. In this study, surface reflectance data derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery are used to map hydrothermal alteration zones for gold exploration. A band ratio derived from the image spectra (4/8, 4/2, and 8/9 in RGB) and a mineral extraction method based on n-dimensional spectral feature space have been developed, and tested against other conventional methods, and known auriferous alteration zones.Spectral signatures used to construct the new band ratio are validated by a field study of the Abu-Marawat area in the Eastern Desert of Egypt. Results indicate that the method is promising for identifying alteration zones and is a useful tool for gold exploration in similar areas elsewhere. © 2010 Elsevier B.V. Source

Nahry A.H.E.,National Authority for Remote Sensing and Space science | Ali R.R.,National Research Center of Egypt | Baroudy A.A.E.,Tanta University
Agricultural Water Management | Year: 2011

The current work is aimed to realizing land and water use efficiency and determining the profitability of precision farming economically and environmentally. The studied area is represented by an experimental pivot irrigation field cultivated with maize in Ismailia province, Egypt. Two field practices were carried out during the successive summer growing seasons (2008 and 2009) to study the response of maize plants single hybrid 10 (S.H.10) to traditional and precision farming practices. Traditional farming (TF) as handled by the farm workers were observed and noted carefully. On the other hand precision farming (PF) practices included field scouting, grid soil sampling, variable rate technology and its applications. After applying PF a dramatic change in management zones was noticed and three management zones (of total four) were merged to be more homogenous representing 84.3% of the pivot irrigation field.Under PF Remote Sensing and Geographic Information System techniques have played a vital role in the variable rate applications that were defined due to management zones requirements. Fertilizers were added in variable rates, so that rationalization of fertilizers saved 23.566 tonnes/experimental pivot area. Natural drainage system was improved by designing vertical holes to break down massive soil layers and to leach excessive salts. Crop water requirements were determined in variable rate according to the actual plant requirements using SEBAL model with the aid of FAO Cropwat model. Irrigation schedule of maize was adopted considering soil water retention, depletion, gross and net irrigation saving an amount of water equal to 93,718m3 in the pivot irrigation field (153.79acre). However costs of applying PF were much higher than TF, the economic profitability (returns-costs) achieved remarkable increase of 29.89% as a result of crop yield increment by 1000, 2100, 800 and 200kg/acre in the management zones 1, 2, 3 and 4, respectively. Finally applying adequate amounts of fertilizers beside water control the environmental hazards was reduced to the acceptable limits. © 2010 Elsevier B.V. Source

Elewa H.H.,National Authority for Remote Sensing and Space science | Qaddah A.A.,Egyptian Environmental Affairs Agency EEAA
Hydrogeology Journal | Year: 2011

Systematic planning for groundwater exploration using modern techniques is essential for the proper utilization, protection and management of this vital resource. Enhanced Thematic Mapper Plus (ETM+) images, a geographic information system (GIS), a watershed modeling system (WMS) and weighted spatial probability modeling (WSPM) were integrated to identify the groundwater potential areas in the Sinai Peninsula, Egypt. Eight pertinent thematic layers were built in a GIS and assigned appropriate rankings. Layers considered were: rainfall, net groundwater recharge, lithology or infiltration, lineament density, slope, drainage density, depth to groundwater, and water quality. All these themes were assigned weights according to their relative importance to groundwater potentiality and their corresponding normalized weights were obtained based on their effectiveness factors. The groundwater potentiality map was finally produced by WSPM. This map comprises five gradational groundwater potentiality classes ranging from very high to very low. The validity of this unbiased GIS-based model was tested by correlating its results with the published hydrogeological map of Egypt and the actual borehole yields, where a concordant justification was reached. The map declared that the Sinai Peninsula is generally of moderate groundwater potentiality, where this class encompasses an area of 33,120 km2 which represents 52% of its total area. © 2011 Springer-Verlag. Source

Mohamed E.S.,National Authority for Remote Sensing and Space science
Arabian Journal of Geosciences | Year: 2013

This study aims to use spatial analyses and a geographic information system (GIS) to assess the environmental sensitivity for desertification in the north Sinai Peninsula, Egypt. Based on the Mediterranean Desertification and Land Use (MEDALUS) approach and the characteristics of the study area, a regional model was developed using GIS. Five main indicators of desertification including soil, climate, erosion, plant cover, and management were considered for estimating the environmental sensitivity to desertification. A spatial analyst extension Arc-GIS 10 software was used for matching the thematic layers and assessing the desertification index, of which the map of environmentally sensitive areas of the north Sinai Peninsula is produced. The obtained data reveals that 65 % of north Sinai is characterized by very severe sensitivity to desertification while the low sensitive one exhibits only 1.2 %. The moderately sensitive area occupies approximately 23 % of the study area. ETM+ and SPOT images are recommended to monitor sensitivity. The MEDALUS model was developed under the Egyptians to assess desertification sensitivity. © 2012 Saudi Society for Geosciences. Source

Abdel Kawy W.A.M.,Cairo University | Abou El-Magd I.H.,National Authority for Remote Sensing and Space science
Arabian Journal of Geosciences | Year: 2013

Overpopulation and food security are the main global problems alert decision makers. In developing countries, such problem put extra pressure for horizontal expansion for agricultural development. The rapid sprawl of urbanized areas on the alluvial land of the River Nile and delta to accommodate the population growth has encouraged governmental and private sector for agricultural expansion in the desert. Unless there are reliable information and accurate studies for land and soil suitability, there will be a collapse of such investment. To evaluate the potential suitability of soil for agriculture development in areas of the western desert, satellite images, geographic information, and field survey including soil profiles and artesian water samples with laboratory analysis were integrated to classify the soils according their suitability for specific crop. The main land qualities of the different mapping units and the crop requirement were rated and matched to obtain the current and potential land suitability using Automated Land Evaluation System "ALES". The study found that the main physiographic units are plateaus, hilland, mountain, and depression floor. But there are three limiting parameters for land suitability which are the lack of nutrient elements, wind erosion vulnerability, and soil texture. The study concluded that the best crops adapted with the soil conditions and could be feasible for economic use are: (1) native vegetation such as agol, sand trees, sammar, halfaa, bawaal, qordaob, bardi, and qortom; (2) filed crops such as onion, garlic, watermelon and wheat; and (3) fruits such as olive and date palms. © 2012 Saudi Society for Geosciences. Source

Discover hidden collaborations