Time filter

Source Type

Kumar J.,National Botanical Research Institute | Kumar A.,National Botanical Research Institute | Roy J.K.,National Botanical Research Institute | Tuli R.,National Agri Food Biotechnology Institute | Khan J.A.,National Botanical Research Institute
Virus Genes | Year: 2010

Monopartite begomoviruses comprise DNA-A as the main genome and associated satellite DNAs. Viral DNA extracted from guar (Cyamopsis tetragonoloba) showing leaf curl symptoms exhibited positive amplification of coat protein (CP) gene of DNA-A component, suggesting the presence of begomovirus. Full length DNA-A was amplified by primer pair re-designed from CP gene nucleotide sequence. The associated alphasatellite and betasatellite DNA molecules were amplified and sequenced, confirming the presence of monopartite begomovirus. Sequence comparisons showed 89% identity with other begomoviruses. The Neighbor-Joining tree based on full length DNA-A nucleotide sequence showed that the guar infecting begomovirus clustered separately from other known begomoviruses. The betasatellite shared a high (96%) nucleotide identity to Cotton leaf curl Multan betasatellites. The alphasatellite showed 91% nucleotide identity to alphasatellite associated with begomovirus infecting Okra. Recombination analyses showed three recombinant fragments in DNA-A, two in betasatellite, and four in alphasatellite. The results suggest that the begomovirus identified in this study was a new recombinant virus. Its name was proposed as Cyamopsis tetragonoloba leaf curl virus (CyTLCuV). © 2010 Springer Science+Business Media, LLC. Source

Sandhir R.,Panjab University | Yadav A.,Panjab University | Sunkaria A.,Panjab University | Singhal N.,National Agri Food Biotechnology Institute
Neurochemistry International | Year: 2015

Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications. © 2015 Elsevier Ltd. All rights reserved. Source

Tyagi A.,National Botanical Research Institute Council of Scientific and Industrial Research | Bag S.K.,National Botanical Research Institute Council of Scientific and Industrial Research | Shukla V.,National Botanical Research Institute Council of Scientific and Industrial Research | Roy S.,National Botanical Research Institute Council of Scientific and Industrial Research | Tuli R.,National Agri Food Biotechnology Institute
PLoS ONE | Year: 2010

Background: DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species. Methodology and Principal Findings: A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR. Conclusions/Significance: Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies. © 2010 Tyagi et al. Source

Singh S.P.,National Agri Food Biotechnology Institute | Vogel-Mikus K.,University of Ljubljana | Arcon I.,University of Nova Gorica | Arcon I.,Jozef Stefan Institute | And 5 more authors.
Journal of Experimental Botany | Year: 2013

Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops. © The Author [2013]. Source

Singh S.P.,National Agri Food Biotechnology Institute | Vogel-Mikus K.,University of Ljubljana | Vavpetic P.,Jozef Stefan Institute | Jeromel L.,Jozef Stefan Institute | And 3 more authors.
Planta | Year: 2014

Main conclusion: Wheat and its related genotypes show distinct distribution patterns for mineral nutrients in maternal and filial tissues in grains. X-ray-based imaging techniques are very informative to identify genotypes with contrasting tissue-specific localization of different elements. This can help in the selection of suitable genotypes for nutritional improvement of food grain crops. Understanding mineral localization in cereal grains is important for their nutritional improvement. Spatial distribution of mineral nutrients (Mg, P, S, K, Ca, Fe, Zn, Mn and Cu) was investigated between and within the maternal and filial tissues in grains of two wheat cultivars (Triticum aestivum Cv. WH291 and WL711), a landrace (T. aestivum L. IITR26) and a related wild species Aegilops kotschyi, using micro-proton-induced X-ray emission (μ-PIXE) and micro-X-ray fluorescence (μ-XRF). Aleurone and scutellum were major storage tissues for macro (P, K, Ca and Mg) as well as micro (Fe, Zn, Cu and Mn) nutrients. Distinct elemental distribution patterns were observed in each of the four genotypes. A. kotschyi, the wild relative of wheat and the landrace, T. aestivum L. IITR26, accumulated more Zn and Fe in scutellum and aleurone than the cultivated wheat varieties, WH291 and WL711. The landrace IITR26, accumulated far more S in grains, Mn in scutellum, aleurone and embryo region, Ca and Cu in aleurone and scutellum, and Mg, K and P in scutellum than the other genotypes. Unlike wheat, lower Mn and higher Fe, Cu and Zn concentrations were noticed in the pigment strand of A. kotschyi. Multivariate statistical analysis, performed on mineral distribution in major grain tissues (aleurone, scutellum, endosperm and embryo region) resolved the four genotypes into distinct clusters. © 2014 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations