Minsk, Belarus

The National Academy of science of Belarus is the national academy of Belarus. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: GV-12-2016 | Award Amount: 28.71M | Year: 2016

In collaboration with the European Commission and the European Green Vehicles Initiative Association, European countries and regions will set-up an ERA-NET Cofund to further promote electric mobility in Europe. Electric Mobility Europe builds on the experiences, networks and results of Electromobility\ and is designed to take transnational e-mobility research and policy exchange to the next level. With a two-track approach, the initiative will link research and policy practice in support of electric mobility at the European level. The first of two pillars of Electric Mobility Europe will fund innovation projects focussing on the application and demonstration of e-mobility with the objective of advancing the mainstreaming of the electrification of mobility in Europe. The initiative will bring together about 30 million EUR for supporting applied innovation projects, including up to 10 million EUR of co-funding provided by the European Commission under Horizon 2020. In 2016, the initiative will issue a call for project proposals addressing the key areas of electric mobility: 1. System integration (transport, (sub)urban areas) 2. Integration of urban freight and city logistics in the e-mobility 3. Smart Mobility concepts and ICT applications 4. Public transport 5. Consumer behaviour and societal trends In addition to funding innovation and demonstration projects, the ERA-NET Cofund Electric Mobility Europe will establish a second pillar of activity. The network will provide a platform for cooperation and exchange of information and experiences among participating countries and regions. In this context, know-how will be shared on setting conducive conditions for the development of electric mobility in Europe (e.g. on charging infrastructure). The network will support this by facilitating suitable means of cooperation such as workshops or seminars in order to exchange or coordinate required actions, in attunement with the European Green Vehicle Initiative Association.


Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: BG-05-2016 | Award Amount: 31.12M | Year: 2016

The overall goal of the proposed Cofund is to strengthen the European Research Area (ERA) in maritime and marine technologies and Blue Growth. The realisation of a European research and innovation agenda needs a broad and systematic cooperation in all areas of waterborne transport, offshore activity, marine resources, maritime security, biotechnologies, desalination, offshore oil & gas, fisheries, aquaculture etc. covering all relevant maritime and marine sectors and regions for a sustainable development of the maritime sector. Research and innovation activities in these fields cannot be tackled either at national levels alone, or solely by a single sector. Coordinated actions are required for the maritime industry to strengthen Europes position in this important and complex economic field in a global market. The proposing consortium will organise and co-fund, together with the EU, a joint call for trans-national research projects on different thematic areas of Blue Growth. Furthermore, additional joint activities that go beyond this co-funded call are planned, in order to contribute to the national priorities as well as to the Strategic Research Agenda of JPI Oceans and WATERBORNE. With the cooperation of ERA-NET MARTEC and JPI Oceans, a broader variety of topics with a larger amount of funding will be available for the trans-national projects. Moreover, the focus of development in MarTERA is given to technologies (instead of sectors) due to their potentially large impact to a wide range of application fields. The proposal responds to the topic ERA-NET Cofund on marine technologies of the work programme 2016-2017 of the societal challenge 2 (Food security, sustainable agriculture and forestry, marine and maritime and inland water research and the bio-economy) under Horizon 2020. Thereby it also contributes to the overall EU objective of building the ERA through enhanced cooperation and coordination of national research programmes.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-SA | Phase: INCO.2013-9.1 | Award Amount: 1.12M | Year: 2014

The overall aim of the SUAFRI-EPC project is to bridge the gap between Agri-Food research and innovation in Eastern Partnering Countries (EPC), by bringing together all actors of the knowledge value chain and raising their awareness on how to uptake research results into innovation. The SUAFRI-EPC is supporting the Agri-Food sector and community in EPC by developing the basis for an efficient Research to Innovation - R2I process with the support of European partnering specialists. The project will consist in the following activities: Networking between Agri-Food actors: Mapping EPC Agri-Food actors at different level of the knowledge value chain and organise brokerage events; Analyse the potential for cooperation and knowledge transfer in the field; Exchange best practices in knowledge/technology transfer via a range of specific training courses ; Implement a R2I pilot project in three (3) targeted EPC countries with a European partner: - R2I Topic A in Armenia: Production methods to optimise economical and environmental sustainability in aquaculture and apiculture sectors; - R2I Topic B in Belarus: Development of consumer preferences for fish and seafood. - R2I Topic C in Georgia: Wine production optimisation using bio-technologies and zoning techniques. Innovation support services to EPC (and European) Agri-Food organisations willing to receive hands-on support for their RDI activities. The SUAFRI-EPC project aims also to cooperate with other European projects and initiatives targeting EPC countries, under Cluster joint activities. Cluster activities will consist in organising and contributing to joint event, exchange of information and support current projects and the successors of: BILAT-Ukr*aina, INCONET CA/SC and INCONET-EECA.


Grant
Agency: European Commission | Branch: FP7 | Program: CPCSA | Phase: INFRA-2013-1.2.1 | Award Amount: 85.21M | Year: 2013

This proposal details activities that will ensure the continued enhancement and ongoing operation of the leading-edge GANT network, supporting a range of network and added-value services, targeted at users across the GANT service area.\nIn the area of multi-domain network service operation, GN3plus plans to deliver fast, efficient provisioning of advanced services, develop operational support across management domains, and improve security to ensure service integrity and protect network resources. These initiatives will be complemented by the development of application services in a federated environment such as mobile and wireless roaming supported by safe and secure Authentication and Authorisation Infrastructure.\nNetworking Activities will provide management and support for all GN3plus activities through communication, promotion, international liaison and business development. Emphasis will be placed on supporting and encouraging service take-up among users by working closely with NRENs. GANT will increase digital inclusion through closer collaboration between NRENs, exchange of staff and specialist expertise, as well as by seeking synergies between public administrations and the GN3plus partners using their vast, shared knowledge base.\nJoint Research Activities will be targeted at providing critical analyses of future network and application technologies, with a view to future deployment of emerging technologies within and outside the GANT community.\nThe governance model aims to increase effectiveness and user influence. The GN3plus Partners Assembly will deal with overall policy and an Executive Board will oversee its implementation. An International User Advisory Committee and External Advisory Committee will ensure users views and senior industry and service provider expertise are channelled directly to the Assembly. Specialised Advisory Boards will ensure highly efficient decision making, and that the voice of the stakeholder community is heard.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: GEANT-2016 | Award Amount: 95.90M | Year: 2016

GN4-2 is the proposed project for the second Specific Grant Agreement under the 68-month Framework Partnership Agreement (FPA) established between the GANT Consortium and the European Commission in April 2015.This second phase of implementing the FPA will raise European research to the next level by promoting scientific excellence, access and re-use of research data. It will also drive European-wide cost efficiencies in scientific infrastructure by promoting interoperability with other e-infrastructures on an unprecedented scale. The FPA objective for the GANT Partnership is to contribute to effective European research by making Europe the best-connected region in the world. GANT must offer European researchers the network, communications facilities and application access that ensure the digital continuum necessary to conduct world-class research in collaboration with their peers, regardless of geographical location. GANT will maintain the operational excellence of the established GANT services, while achieving economies on the costs of the backbone network. The reliable, secure and state-of-the-art network services offered to researchers and other network users across Europe will remain exceptional. Massive data-transfer capacities required by extreme-scale instruments and by the penetration of big data in many areas of science will be prototyped with due consideration to the specific security and deployment challenges. Trust and identity is also prioritised with the introduction of a scalable operational model and with user requirements addressed in close concertation with the AARC and proposed AARC2 projects. GN4-2 developments are also guided by the vision of a future where a set of coherent and integrated European e-infrastructure services will offer convenient, seamless access for end-users through a common service catalogue, and facilitating the adoption of services offered by new e-infrastructure developments, such as the European Open Science Cloud.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: GEANT-CABLE-2015 | Award Amount: 12.45M | Year: 2016

The BELLA-S1 proposal aims to provide for the long-term interconnectivity needs of the European and Latin American research and education networks, and answers the call for transatlantic connectivity to Latin America in the H2020 Work Programme 2014-15. The objective will be to strengthen connectivity to Latin America ensuring very high capacity, cost benefits and the shortest possible route, whilst stimulating diversity over the transatlantic segment. The objective will be met in two phases: phase one will procure an indefeasible right of use for a portion of the spectrum of a direct submarine telecommunications cable between Europe and Latin America; phase two will deploy one or more wavelengths, as required, on the spectrum procured to interconnect the GANT and RedCLARA networks, and provide for the intercontinental connectivity needs of the European and Latin American research and education communities.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: GEANT | Award Amount: 44.18M | Year: 2015

The overall objective is to provide a stable environment for the implementation of GANT as the European Communications Commons for the European Research Area, which will provide the best possible digital infrastructure to ensure that Europe remains in the forefront of research. GANTs extensive and long-standing contacts with large data disciplines such as biology, radioastronomy and high-energy physics help shape the evolution of the networking facilities required. This is complemented by partner contacts with research domains that are new users of high-performance networks and services, such as: digital preservation, real-time art and humanities. The vision is to position the GANT partnership optimally to achieve the strategic objectives of the FPA while ensuring the continuity and improvement of the services successfully offered under the GN3plus FP7 project. The extensive experience of the GANT partnership in providing high-quality and innovative services has been applied to the preparation phase of this proposal. The following GN4-1 work package objectives deserve to be highlighted: Maintain and enhance the production service and achieve cost reductions without negative effects on network service levels. Coordinate with the other European e-infrastructure efforts both individually and in the framework of the increased coordination effort. Prepare a new round of Open Call projects to start immediately after the end of the GN4-1 project. Expand the footprint and the depth of services offered to roaming users with enhanced trust and identity services through Federation as a Service and with group and attribute management added to eduGAIN. Develop online real-time services to improve the ease and function of videconferencing, open learning support and general multimedia use. Review the existing service catalogue using the Product Lifecycle Management process to assess the cost/benefits of each carefully to define the future service strategy.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-SA | Phase: INCO.2013-9.1 | Award Amount: 1.12M | Year: 2013

The overall aim of the SECURE-R2I project is to reinforce cooperation with Eastern Partnership Countries (EPC) on bridging the gap between research and innovation for Horizon 2020 Societal Challenge 6. Inclusive, Innovative and Secure Societies. The research domains encompassed by Inclusive, Innovative and Secure Societies are broad. From the perspective of FP7 thematic priorities, they include ICT; Security; Nanosciences, Nanotechnologies, Materials (NMP); and Social Sciences and Humanities (SSH). These research domains also form the basis of important economic sectors in the EPC, with many potential benefits for the EU, but which also need European support to increase their exploitation. Addressing this issue, the SECURE-R2I project will assist R&D and innovation (RDI) organisations in EPC via a range of knowledge and technology transfer activities with the support of European specialists. The activities include: Networking between EPC organisations involved in RDI for Societal Challenge 6: It consists in mapping EPC RDI organisations and organising brokerage events to stimulate cooperation; Analysing the tech transfer opportunities and bottlenecks of EPC organisations involved in RDI for Societal Challenge 6: It consists in surveying these organisations and holding discussions with representatives of government, industry, government and intermediary bodies; Exchanging best practices in knowledge/technology transfer via a range of specific training courses and intensive summer schools in Europe; Twinning via R2I pilot projects: Each EPC research partner in the consortium will twin with another consortium partner who will support them to implement a bilateral R2I pilot project; Providing innovation support services to selected, high-potential EPC (and European) RDI: The activities will consist in coaching and advisory services on innovation and tech-transfer.


Patent
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, King Abdulaziz City for Science and Technology | Date: 2016-08-10

An interferometer includes a tunable laser source (1) of coherent radiation generating an input beam; a first polarizer (2) configured to transmit a polarized beam with adjustable intensities of orthogonally polarized components; a broadband non-polarizing beam splitter (3) forming two optically connected arms (I; II), first one with a transmitted beam, and sequentially comprising a birefringent element (4) configured to split the polarized input beam into two separate, parallel, orthogonally polarized reference beam and object beam and mounted on the base (5) with fine rotation, the birefringent element acts as both the splitter and the combiner in an interferometer; and a sample (6) with means of its shifting and inclining; and a chopper wheel (10) with a system of holes that opens sequentially for some time object and reference beams separately, then simultaneously, providing interference of said beams; and a broadband plane mirror (11) reflecting incident object and reference beams in the opposite direction and providing double passing of the beams through the sample and the birefringent element which converts two said beams into orthogonally polarized components of a single output beam falling on a non-polarizing beam splitter; this beam, been reflected, forms the second arm (II) of the interferometer, where there are sequentially arranged a controllable phase retarder (12), configured to introduce phase shift only into one polarization component of a said beam; and the second polarizer (13) that equalizes and mixes the polarization components of the input said beam and transforms input said beam into a beam, which is the result of interference of polarization components of the input beam; and a photodetector (14) configured to receive an input beam and transform an intensity of the beam into output electric signal (27), which can be amplified and analyzed by various electronic devices.


Patent
King Abdulaziz City for Science, Technology, B. I. Stepanov Institute of Physics and National Academy of Sciences of Belarus | Date: 2015-11-01

A differential polarization interferometer is provided. An interferometer performs direct measurement of phase shift of a light wave passed under an arbitrary angle through a sample composed of a transparent substrate holding a thin deposited test film, for metamaterial testing. An example apparatus has a laser source and a first polarizer, and two optically connected arms. A first arm creates orthogonally polarized components of a single output beam for a broadband non-polarizing beam splitter. A second arm has a controllable phase retarder to introduce a phase shift into one polarization component of the reflected single output beam, and a second polarizer to equalize and mix the polarization components of the reflected single output beam. This transforms the reflected single output beam into a beam resulting from interference of polarization components of the reflected single output beam. A photodetector transforms an intensity of the beam into an electric signal for output.

Loading National Academy of Sciences of Belarus collaborators
Loading National Academy of Sciences of Belarus collaborators