Redwood City, CA, United States
Redwood City, CA, United States

Time filter

Source Type

A system and method for determining the genetic data for one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available, are disclosed. Genetic data for the target individual is acquired and amplified using known methods, and poorly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related subjects. In accordance with one embodiment of the invention, incomplete genetic data is acquired from embryonic cells, fetal cells, or cell-free fetal DNA isolated from the mothers blood, and the incomplete genetic data is reconstructed using the more complete genetic data from a larger sample diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals.


Patent
Natera | Date: 2016-11-03

Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.


Disclosed herein are system, method, and computer program product embodiments for determining aneuploidy risk in a target sample of maternal blood or plasma based on the amount of fetal DNA. An embodiment operates by receiving known genetic data from known prenatal testing samples and genetic data for the target sample. A fetal fraction distribution is determined for the known genetic data based on gestational age and the maternal weight associated with the target sample. A model is then generated based on a fixed ratio reduction of the determined fetal fraction distribution. A fetal fraction based data likelihood for the target sample is then determined for each of the plurality of ploidy states using the generated model. An aneuploidy risk score is then outputted based on applying a Bayesian probability determination that combines each fetal fraction based data likelihood with a previously determined risk score as a conditional value.


Patent
Natera | Date: 2016-09-06

Disclosed herein is a system and method for making allele calls, and for determining the ploidy state, in one or a small set of cells, or where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed and the haplotypes are determined using expected similarities between the target genome and the knowledge of the genomes of genetically related individuals. In one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the genetic data from both parents, and possibly one or more sperm and/or sibling embryos. In another embodiment, the chromosome copy number can be determined using the same input data. In another embodiment, these determinations are made for embryo selection during IVF, for non-invasive prenatal diagnosis, or for making phenotypic predictions.


A system and method for determining the genetic data for one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Genetic data for the target individual is acquired and amplified using known methods, and poorly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related subjects. In accordance with one embodiment of the invention, incomplete genetic data from an embryonic cell is reconstructed using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals. In accordance with another embodiment of the invention, incomplete genetic data from a fetus is acquired from fetal cells, or cell-free fetal DNA isolated from the mothers blood, and the incomplete genetic data is reconstructed using the more complete genetic data from a larger sample diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals. In one embodiment, the genetic data can be reconstructed for the purposes of making phenotypic predictions. In another embodiment, the genetic data can be used to detect for aneuploides and uniparental disomy.


Patent
Natera | Date: 2016-08-31

Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.


A system and method for determining the genetic data for one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available, and also for predicting likely phenotypic outcomes using mathematical models and given genetic, phenotypic and/or clinical data of an individual, and also relevant aggregated medical data consisting of genotypic, phenotypic, and/or clinical data from germane patient subpopulations. Genetic data for the target individual is acquired and amplified using known methods, and poorly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related subjects. In one embodiment of the invention, incomplete genetic data from an embryonic cell is reconstructed using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals. In another embodiment, incomplete genetic data from a fetus is acquired from fetal cells, or cell-free fetal DNA isolated from the mothers blood, and the incomplete genetic data is reconstructed using the more complete genetic data from a larger sample diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals. In another embodiment, the genetic data can be reconstructed for the purposes of making phenotypic predictions. In another embodiment, the genetic data can be used to detect for aneuploides and uniparental disomy. In another embodiment, phenotypic predictions may be made using models based on contingency tables for genetic data that can be constructed from data available in genomic databases. In another embodiment, a plurality of models are created and tested using a set of test data, and the prediction is made using the model that is identified as the most accurate.


Patent
Natera | Date: 2016-08-22

Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.


Patent
Natera | Date: 2016-09-22

Disclosed herein are methods for determining the copy number of a chromosome in a fetus in the context of non-invasive prenatal diagnosis. In an embodiment, the measured genetic data from a sample of genetic material that contains both fetal DNA and maternal DNA is analyzed, along with the genetic data from the biological parents of the fetus, and the copy number of the chromosome of interest is determined. In an embodiment, the maternal serum is measured using a single-nucleotide polymorphism (SNP) microarray, along with parental genomic data, and the determination of the chromosome copy number is used to make clinical decisions pertaining to the fetus.


Patent
Natera | Date: 2016-01-14

Embodiments of the invention include methods and compositions for producing standards for noninvasive prenatal genetic diagnostics and for the detection and monitoring of cancer. The compositions can include a plurality of different nucleosomal DNA fragments derived from either primary cells or cell lines and can include one or more synthetic oligonucleotides. The amount of the different nucleosomal DNA fragments can be varied so as to simulate naturally occurring cell free DNA samples obtained from the blood of the pregnant woman or naturally occurring cell free DNA samples obtained from the blood of cancer patients.

Loading Natera collaborators
Loading Natera collaborators