Time filter

Source Type

Stepanenko A.A.,NASU Institute of Molecular Biology and Genetics
T{combining double inverted breve}Sitologii{combining double inverted breve}a i genetika | Year: 2012

The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MC-F10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different "immortalizing agents", oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor "oncogene and chromosome addiction", intra-/intertumor heterogeneity, and chromosome instability. Source

BACKGROUND: The methylotrophic yeast, Hansenula polymorpha is an industrially important microorganism, and belongs to the best studied yeast species with well-developed tools for molecular research. The complete genome sequence of the strain NCYC495 of H. polymorpha is publicly available. Some of the well-studied strains of H. polymorpha are known to ferment glucose, cellobiose and xylose to ethanol at elevated temperature (45 - 50°C) with ethanol yield from xylose significantly lower than that from glucose and cellobiose. Increased yield of ethanol from xylose was demonstrated following directed metabolic changes but, still the final ethanol concentration achieved is well below what is considered feasible for economic recovery by distillation.RESULTS: In this work, we describe the construction of strains of H. polymorpha with increased ethanol production from xylose using an ethanol-non-utilizing strain (2EthOH-) as the host. The transformants derived from 2EthOH- overexpressing modified xylose reductase (XYL1m) and native xylitol dehydrogenase (XYL2) were isolated. These transformants produced 1.5-fold more ethanol from xylose than the original host strain. The additional overexpression of XYL3 gene coding for xylulokinase, resulted in further 2.3-fold improvement in ethanol production with no measurable xylitol formed during xylose fermentation. The best ethanol producing strain obtained by metabolic engineering approaches was subjected to selection for resistance to the known inhibitor of glycolysis, the anticancer drug 3-bromopyruvate. The best mutant selected had an ethanol yield of 0.3 g/g xylose and produced up to 9.8 g of ethanol/l during xylose alcoholic fermentation at 45°C without correction for ethanol evaporation.CONCLUSIONS: Our results indicate that xylose conversion to ethanol at elevated temperature can be significantly improved in H. polymorpha by combining methods of metabolic engineering and classical selection. Source

Tatarskyy P.,NASU Institute of Molecular Biology and Genetics
TSitologiia i genetika | Year: 2010

Analysis of F2, F5 and MTHFR genes SNPs allelic variants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis. Following genotypes have been identified: GG (97%), GA (3%) for F2 gene G20210A SNP, GG (96.5%), GA (3.5%) for F5 gene G1691A SNP and CC (49.5%), CT (43%), TT (7.5%) for MTHFR gene C677T SNP. Following combined genotypes have been detected. We observed 1.7% heterozygous carriers of MTHFR gene 677T SNP which were heterozygous for one of the alleles of F5 1691A or F2 20210A genes. On the other hand, the 7.5% MTHFR gene 677T SNP homozygous individuals carried wild type alleles only of F5 and F2 genes. None of the individuals was carrying F5 1691A and F2 20210A genes polymorphic variants simultaneously. The data about F2, F5 and MTHFR genes SNPs allelic frequencies in the population of Ukraine have been obtained. Thus, distribution of F2, F5 and MTHFR genotypes based on analysis of SNP in those three genes simultaneously has been detected. Source

Blazhenko O.V.,NASU Institute of Molecular Biology and Genetics
Current Microbiology | Year: 2014

The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3-4 and 5-6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism. © 2014 Springer Science+Business Media. Source

Gordiyuk V.V.,NASU Institute of Molecular Biology and Genetics
Biopolymers and Cell | Year: 2011

Numerous disorders of genes and alterations of their expression are observed on a short arm of human chromosome 3, particularly in 3p14, 3p21, 3p24 compact regions in epithelial tumors. These aberrations affect the key biological processes specific for cancerogenesis. Such genes or their products could be used for diagnostics and prognosis of cancer. Genetical and epigenetical changes of a number of genes on chromosome 3 in human urogenital cancer, their role in cellular processes and signal pathways and perspectives as molecular markers of cancer diseases are analyzed in the review. © 2011, National Academy of Sciences of Ukraine. All rights reserved. Source

Discover hidden collaborations