Nara Institute of Science and Technology

www.naist.jp
Nara, Japan

Nara Institute of Science and Technology , abbreviated as NAIST, is a Japanese national university located in Ikoma, Nara of Kansai Science City. It was founded in 1991 with a focus on research and consists solely of graduate schools in three integrated areas: Biological science, Information science, and Material science. In 2010, NAIST ranked first overall among the 86 Japanese national universities by the Japanese government in its first-ever six-year assessment of national university standards and achievements.The university has a total of about 1,000 Master's and Doctoral students in its three graduate schools , among which 10% are international students . There are about 200 faculty members and 170 staff . Wikipedia.


Time filter

Source Type

Patent
Sharp Kabushiki Kaisha, Nara Institute of Science and Technology | Date: 2016-07-13

A light emitting device includes a light source and a wavelength converter that includes a resin including a constitutional unit that includes an ionic liquid or a derivative of the ionic liquid, and a semiconductor nanoparticle phosphor included in the resin and provided on at least a portion of the light source. A wavelength converter includes a resin including a constitutional unit that includes an ionic liquid or a derivative of the ionic liquid, and a semiconductor nanoparticle phosphor included in the resin and emitting fluorescence upon receiving excitation light. A light emitting device includes the wavelength converter and a light source emitting excitation light to the wavelength converter, which is provided separately from the wavelength converter.


Patent
Nara Institute of Science, Technology and Sekisui Chemical Co. | Date: 2017-05-03

The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the step of putting a dopant composition in contact with a nanomaterial in a solvent, the dopant composition containing an anion, a cation, and a scavenger.


Patent
Nara Institute of Science, Technology and Sekisui Chemical Co. | Date: 2015-02-10

The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the steps of: (a) putting a dopant composition in contact with a nanomaterial in a solvent; (b) drying a mixture obtained in the step (a) so as to remove the solvent, the dopant composition containing a given anion and an onium ion.


Patent
Nara Institute of Science, Technology and Sekisui Chemical Co. | Date: 2017-05-03

The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the steps of: (a) putting a dopant composition in contact with a nanomaterial in a solvent; (b) drying a mixture obtained in the step (a) so as to remove the solvent, the dopant composition containing a given anion and an onium ion.


Patent
Nara Institute of Science, Technology and Sekisui Chemical Co. | Date: 2015-06-19

The present invention provides a method for manufacturing a dopant composition-nanomaterial composite, which method makes it possible to simply and efficiently change a Seebeck coefficient value of a nanomaterial. This manufacture method of the present invention includes the step of putting a dopant composition in contact with a nanomaterial in a solvent, the dopant composition containing an anion, a cation, and a scavenger.


Hashimoto T.,Nara Institute of Science and Technology
Current Opinion in Plant Biology | Year: 2013

The construction of dynamic polar microtubules from 13 protofilaments consisting of α-tubulin and β-tubulin heterodimers requires a preformed nucleation seed that specifies subcellular localization and timing of microtubule polymerization in vivo. An evolutionarily conserved γ-tubulin-containing ring complex is recruited to the lateral wall of preexisting microtubules or outer nuclear membranes in plant cells, and is then activated as a template for new microtubules of defined geometry. Specific regulators are thought to target/activate the ring complex to nucleate nascent microtubules in distinct polymerization patterns, as seen in interphase and mitotic arrays. The augmin complex, which was initially identified in metazoan cells, recruits the ring complex to plant mitotic microtubules, where new polymers are abundantly generated at shallow angles. © 2013 Elsevier Ltd.


Morita M.T.,Nara Institute of Science and Technology
Annual Review of Plant Biology | Year: 2010

Plants can reorient their growth direction by sensing organ tilt relative to the direction of gravity. With respect to gravity sensing in gravitropism, the classic starch statolith hypothesis, i.e., that starch-accumulating amyloplast movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Several lines of experimental evidence have demonstrated that starch is important but not essential for gravity sensing and have suggested that it is reasonable to regard plastids (containers of starch) as statoliths. Although the word statolith means sedimented stone, actual amyloplasts are not static but instead possess dynamic movement. Recent studies combining genetic and cell biological approaches, using Arabidopsis thaliana, have demonstrated that amyloplast movement is an intricate process involving vacuolar membrane structures and the actin cytoskeleton. This review covers current knowledge regarding gravity sensing, particularly gravity susception, and the factors modulating the function of amyloplasts for sensing the directional change of gravity. Specific emphasis is made on the remarkable differences in the cytological properties, developmental origins, tissue locations, and response of statocytes between root and shoot systems. Such an approach reveals a common theme in directional gravity-sensing mechanisms in these two disparate organs. Copyright © 2010 by Annual Reviews. All rights reserved.


Kimata Y.,Nara Institute of Science and Technology | Kohno K.,Nara Institute of Science and Technology
Current Opinion in Cell Biology | Year: 2011

Upon endoplasmic reticulum (ER) stress, ER-located transmembrane stress sensors evoke diverse protective responses. Although ER stress-dependent activation of the sensor proteins is partly explained through their negative regulation by the ER-located chaperone BiP under non-stress conditions, each of the sensors is also regulated by distinct mechanism(s). For instance, yeast Ire1 is fully activated via its direct interaction with unfolded proteins accumulated in the ER. This insight is consistent with a classical notion that unfolded proteins per se trigger ER-stress responses, while various stress stimuli also seem to activate individual sensors independently of unfolded proteins and in a stimuli-specific manner. These properties may account for the different responses observed under different conditions in mammalian cells, which carry multiple ER-stress sensors. © 2010 Elsevier Ltd.


Yoshida A.,Nara Institute of Science and Technology
Blood | Year: 2013

The ubiquitin ligase constitutively photomorphogenic 1 (COP1) is involved in many biological responses in mammalian cells, but its role in tumorigenesis remains unclear. Here we show that COP1 is a ubiquitin ligase for the tumor suppressor CCAAT/enhancer-binding protein (C/EBPα) and promotes its degradation in vivo, thereby blocking myeloid differentiation of hematopoietic cells for tumorigenesis. In this process, mammalian homolog of Tribbles, Trib1, which contains a COP1-binding motif, is essential for down-regulation of C/EBPα expression. Murine bone marrow transplantation experiments showed that coexpression of COP1 accelerates development of acute myeloid leukemia induced by Trib1, which pathologically resembles that of p42C/EBPα-deficient mice. Interestingly, coexpression of ligase activity-deficient COP1 mutant abrogated Trib1-induced leukemogenesis. These results indicate that COP1 and Trib1 act as an oncoprotein complex functioning upstream of C/EBPα, and its ligase activity is crucial for leukemogenesis.


Patent
Nara Institute of Science and Technology | Date: 2016-01-27

L-cysteine can be produced inexpensively and efficiently by using a bacterium belonging to the family Enterobacteriaceae modified to reduce activity of O-acetylserine sulfhydrylase B thereof, the bacterium being modified so that the C terminal region of its thiosulfate-binding protein is deleted, and the bacterium having an increased ability to produce L-cysteine in the presence of a sulfate.

Loading Nara Institute of Science and Technology collaborators
Loading Nara Institute of Science and Technology collaborators