Time filter

Source Type

Blacksburg, VA, United States

Li S.,Continent Development | Erickson R.J.,Continent Development | Wallis L.K.,Continent Development | Diamond S.A.,NanoSafe Inc. | Hoff D.J.,Continent Development
Environmental Pollution | Year: 2015

As a semiconductor with wide band gap energy, TiO2 nanoparticles (nano-TiO2) are highly photoactive, and recent efforts have demonstrated phototoxicity of nano-TiO2 to aquatic organisms. However, a dosimetry model for the phototoxicity of nanomaterials that incorporates both direct UV and photo-activated chemical toxicity has not yet been developed. In this study, a set of Hyalella azteca acute toxicity bioassays at multiple light intensities and nano-TiO2 concentrations, and with multiple diel light cycles, was conducted to assess how existing phototoxicity models should be adapted to nano-TiO2. These efforts demonstrated (a) adherence to the Bunsen-Roscoe law for the reciprocity of light intensity and time, (b) no evidence of damage repair during dark periods, (c) a lack of proportionality of effects to environmental nano-TiO2 concentrations, and (d) a need to consider the joint effects of nano-TiO2 phototoxicity and direct UV toxicity. © 2015 Elsevier Ltd. All rights reserved. Source

Ma H.,U.S. Environmental Protection Agency | Diamond S.A.,NanoSafe Inc.
Environmental Toxicology and Chemistry | Year: 2013

Zebrafish embryos have been used increasingly to evaluate nanomaterial toxicity. The present study compared phototoxicity of TiO2 nanoparticles with zebrafish at 4 life stages (embryos, yolk-sac larvae, free-swimming larvae, and juvenile) under simulated sunlight using the 96-h standard toxicity assay. Yolk-sac larvae were found to be the most sensitive to TiO2 phototoxicity, suggesting that the widely used zebrafish embryo test may not fully or accurately predict hazard and risk of these nanoparticles to small fish. © 2013 SETAC. Source

Li S.,U.S. Environmental Protection Agency | Wallis L.K.,U.S. Environmental Protection Agency | Ma H.,U.S. Environmental Protection Agency | Diamond S.A.,NanoSafe Inc.
Science of the Total Environment | Year: 2014

This study investigated phototoxicity of TiO2 nanoparticles (nano-TiO2) to a freshwater benthic amphipod (Hyalella azteca) using 48-h and 96-h bioassays. Thorough monitoring of particle interactions with exposure media (Lake Superior water, LSW) and the surface of organisms was performed using dynamic light scattering, UV/Vis spectroscopy, and Scanning Electron Microscopy. Large agglomeration and sedimentation (>77%) in LSW was observed after 0.5h. A simulated solar radiation (SSR)-favored surface attachment of nanoparticles was observed, indicating enhanced phototoxicity with the increased attachment. A 96-h median lethal concentration (LC50) of 29.9mg/L in H. azteca was calculated, with a daily 4-h UV exposure of 2.2W/m2. Phototoxicity of nano-TiO2 under SSR had a 21-fold increase as compared to that under ambient laboratory light. This phototoxicity was also dependent on UV dose, with calculated LC50s around 22.9 (95% CI, 20.5-23.3)Wh/m2 when exposed to 20mg/L nano-TiO2. Also, H. azteca exhibited negative phototaxis in the presence of shelters, indicating that other factors might play a role in environmental systems. Finally, the environmental implications of nano-TiO2 to benthic organisms were illustrated, emphasizing the importance of various environmental factors in the ultimate phototoxicity. This increased phototoxicity and its complex interactions with various environmental factors suggest further investigations are needed for future risk assessment of photoactive nanomaterials to benthic organisms. © 2013 Elsevier B.V. Source

Poda A.R.,U.S. Army | Bednar A.J.,U.S. Army | Kennedy A.J.,U.S. Army | Harmon A.,U.S. Army | And 5 more authors.
Journal of Chromatography A | Year: 2011

The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46. nm, indicating a significant change in the nanoparticle characteristics during exposure. © 2010. Source

Li S.,U.S. Environmental Protection Agency | Pan X.,Texas Tech University | Wallis L.K.,U.S. Environmental Protection Agency | Fan Z.,Texas Tech University | And 2 more authors.
Chemosphere | Year: 2014

With a dramatic rise in complexity, needs of nanotoxicology research go beyond simple forms of nanomaterials. This study compared the phototoxicity of nano-TiO2 and graphene-TiO2 nanocomposite (GNP). GNP was synthesized based on a hydrothermal method, which simultaneously performed the reduction of graphene oxide and nano-TiO2 loading. A series of acute toxicity tests of nano-TiO2, graphene and GNP was performed on two aquatic organisms, Daphnia magna and Oryzias latipes. Fast and substantial agglomeration and sedimentation of nanoparticles in test media and surface attachment of nano-TiO2 and GNP on D. magna surface was observed. Similar phototoxicity of nano-TiO2 and GNP for both species existed, though compared with nano-TiO2, GNP had a 2.3-fold increase in visible light photocatalytic ROS generation. In summary, this study demonstrated the significance of illumination spectrum, particle behavior, and species sensitivity on nanophototoxicity, and the needs for research on increasingly sophisticated functional materials. © 2014 Elsevier Ltd. Source

Discover hidden collaborations