Time filter

Source Type

Caballero D.,Nanobioengineering Group IBEC | Caballero D.,University of Barcelona | Caballero D.,CIBER ISCIII | Caballero D.,Laboratory of Cell Physics ISIS IGBMC | And 8 more authors.
Sensors and Actuators, B: Chemical | Year: 2013

An array of well-ordered conducting polypyrrole microrings doped with cobaltabisdicarbollide [Co(C2B9H11) 2]- anions was fabricated by means of electropolymerization and submerged micro-contact printing techniques. The different conductive properties of the micropatterned thiols acted as a template for directing the electrochemical 3D growth of the microstructures over large areas. X-ray photoelectron spectroscopy characterization confirmed the presence of this unusual doping anion within the polymer. Its intrinsic properties together with hydrophobic interactions with the thiols guided the formation of the ring structures. A topographic study by atomic force microscopy gave insights into the PPy/[Co(C2B9H11) 2]- growing mechanism which is in agreement with the theoretical model of metal growth. Finally, the conductive properties of the microstructures were addressed by conductive-atomic force microscopy, showing a highly conductive behaviour. This methodology using cobaltabisdicarbollide as dopant anion could have important applications in organic microelectronics for the development of biosensors, in cell microarrays and for the fabrication of polymer-based microencapsulators. © 2012 Elsevier B.V.

Caballero D.,Nanobioengineering Group IBEC | Caballero D.,University of Barcelona | Caballero D.,CIBER ISCIII | Martinez E.,Nanobioengineering Group IBEC | And 7 more authors.
Analytica Chimica Acta | Year: 2012

In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples. © 2012 Elsevier B.V.

Discover hidden collaborations