Tianjin, China
Tianjin, China

Nankai University , often known as Nankai, is a public research university located in Tianjin mainland China. Founded in 1919 by prominent educators Zhang Boling and Yan Fansun , Nankai is one of the most prestigious universities in China. Its alumi include the former Premier Zhou Enlai and Nobel laureates Chen Ning Yang and Tsung-Dao Lee. Wikipedia.


Time filter

Source Type

News Article | April 17, 2017
Site: cen.acs.org

With the help of a little light, a metal-organic framework (MOF) containing photoluminescent lanthanides can uniquely identify and measure the concentrations of multiple solvents, a research team reports (Chem 2017, DOI: j.chempr.2017.02.010). Applied to a dipstick, the material could enable rapid identification of environmental contaminants on-site rather than require responders to send samples to a lab. The approach could also solve the tricky analytical problem of determining how much H O contaminates D O, an issue for isotopic labeling in biomolecular experiments and calibration for spectroscopic methods such as nuclear magnetic resonance. Led by University of Texas, Austin, chemistry professor Simon M. Humphrey, the team investigated a MOF composed of tris(p-carboxylato)triphenylphosphine and europium(III), gadolinium(III), and terbium(III). Each lanthanide has a unique emission spectrum: EuIII emits red, GdIII emits ultraviolet, and TbIII emits green light. But when solvent molecules bind within the MOF, the molecules’ vibrational frequencies quench the lanthanide emissions in a way that’s unique to each solvent-lanthanide combination. The researchers exploited those properties to identify solvents by creating several MOFs with varying ratios of the lanthanides. They exposed each of four MOF varieties to a solvent, excited them at 365 nm, and compared the resulting emission intensity at three wavelengths. The approach allowed the scientists to identify a characteristic fingerprint for each solvent, thereby distinguishing among H O, D O, methanol, ethanol, toluene, benzene, and 12 other solvents. “We were lucky that we stumbled across the right combination of lanthanides to do this,” Humphrey says. He and colleagues created dipstick-like sensors by using spray glue to deposit the MOFs onto glass slides and immersing them in solvents. The researchers could reuse the dipsticks multiple times by heating them to drive off the solvent. Distinguishing between H O and D O is particularly difficult because the two molecules are so similar. “Using a lanthanide MOF as a sensor to detect a trace amount of H O in D O is really fantastic work that not only greatly deepens the research of luminescent lanthanide MOFs but also proposes a new application,” comments Peng Cheng, a chemistry professor at Nankai University. CORRECTION: This story was updated on April 19, 2017, to correct the spelling of Peng Cheng’s family name.


Guo D.-S.,Nankai University | Liu Y.,Nankai University
Chemical Society Reviews | Year: 2012

Calixarenes are one kind of phenol-formaldehyde cyclic oligomers, discovered from the Bakelite process. Their intrinsic characteristics, including the unique structural scaffold, facile modification and adjustable inclusion property, show pronounced potential for supramolecular polymerization. In this tutorial review, we summarize the current stage of fabrication of calixarene-based supramolecular polymers. Three types of calixarene-based supramolecular polymers are, respectively, illustrated according to the different activities of calixarenes: (1) calixarene-based supramolecular polycaps, (2) supramolecular polymers with polymeric calixarene scaffolds where the cavities remain unexploited; (3) supramolecular polymers formed by the host-guest interactions offered by calixarene cavities. Furthermore, the stimuli-responsiveness and functions of calixarene-based supramolecular polymers are illustrated, which endow them with a broad range of potential applications as smart, self-healing materials and delivery carriers. This journal is © The Royal Society of Chemistry 2012.


Tang Q.,Nankai University | Zhou Z.,Nankai University
Progress in Materials Science | Year: 2013

Graphene, an atomic monolayer of carbon atoms in a honeycomb lattice realized in 2004, has rapidly risen as the hottest star in materials science due to its exceptional properties. The explosive studies on graphene have sparked new interests towards graphene-analogous materials. Now many graphene-analogous materials have been fabricated from a large variety of layer and non-layer materials. Also, many graphene-analogous materials have been designed from the computational side. Though overshadowed by the rising graphene to some degree, graphene-analogous materials have exceptional properties associated with low dimensionality and edge states, and bring new breakthrough to nanomaterials science as well. In this review, we summarize the recent progress on graphene-analogous low-dimensional materials (2D nanosheets and 1D nanoribbons) from both experimental and computational side, and emphasis is placed on structure, properties, preparation, and potential applications of graphene-analogous materials as well as the comparison with graphene. The reviewed materials include strictly graphene-like planar materials (experimentally available h-BN, silicene, and BC3 as well as computationally predicted SiC, SiC2, B, and B2C), non-planar materials (metal dichalcogenides, metal oxides and hydroxides, graphitic-phase of ZnO, MXene), metal coordination polymers, and organic covalent polymers. This comprehensive review might provide a directional guide for the bright future of this emerging area. © 2013 Elsevier Ltd. All rights reserved.


Hu X.,Nankai University | Zhou Q.,Nankai University
Chemical Reviews | Year: 2013

The article examines the health and ecosystem risks of graphene. The size of graphene directly controls the physicochemical properties of graphene. A larger graphene size induces a smaller percolation threshold with changes of the thermal and mechanical properties of graphene. The thermal conductivity of graphene grows with increasing linear dimensions of graphene flakes. A strong size dependence of charge distributions was found in rectangular graphene sheets. The cytotoxicity, subcellular localization, blood circulation, organ uptake, and etiopathology of nanomaterials are affected by the size distribution. Importantly, the size distribution influences the nanotoxicity because the exposure dose of nanomaterials is related to mass and sizes in toxicology. The previous work has demonstrated that nanomaterials with a certain size distribution exhibited the greatest cytotoxicity and cellular uptake. Defects such as structural imperfections and chemical impurities could unintentionally or unavoidably produce edges that disturb the reactive microenvironment and paths of bioresponses.


Guo D.-S.,Nankai University | Liu Y.,Nankai University
Accounts of Chemical Research | Year: 2014

ConspectusDevelopments in macrocyclic chemistry have led to supramolecular chemistry, a field that has attracted increasing attention among researchers in various disciplines. Notably, the discoveries of new types of macrocyclic hosts have served as important milestones in the field. Researchers have explored the supramolecular chemistry of several classical macrocyclic hosts, including crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Calixarenes represent a third generation of supramolecular hosts after cyclodextrins and crown ethers. Easily modified, these macrocycles show great potential as simple scaffolds to build podand-like receptors. However, the inclusion properties of the cavities of unmodified calixarenes are not as good as those of other common macrocycles. Calixarenes require extensive chemical modifications to achieve efficient endo-complexation.p-Sulfonatocalix[n]arenes (SCnAs, n = 4-8) are a family of water-soluble calixarene derivatives that in aqueous media bind to guest molecules in their cavities. Their cavities are three-dimensional and π-electron-rich with multiple sulfonate groups, which endow them with fascinating affinities and selectivities, especially toward organic cations. They also can serve as scaffolds for functional, responsive host-guest systems. Moreover, SCnAs are biocompatible, which makes them potentially useful for diverse life sciences and pharmaceutical applications.In this Account, we summarize recent work on the recognition and assembly properties unique to SCnAs and their potential biological applications, by our group and by other laboratories. Initially examining simple host-guest systems, we describe the development of a series of functional host-guest pairs based on the molecular recognition between SCnAs and guest molecules. Such pairs can be used for fluorescent sensing systems, enzymatic activity assays, and pesticide detoxification. Although most macrocyclic hosts prevent self-aggregation of guest molecules, SCnAs can induce self-aggregation. Researchers have exploited calixarene-induced aggregation to construct supramolecular binary vesicles. These vesicles respond to internal and external stimuli, including temperature changes, redox reactions, additives, and enzymatic reactions. Such structures could be used as drug delivery vehicles.Although several biological applications of SCnAs have been reported, this field is still in its infancy. Continued exploration of the supramolecular chemistry of SCnAs will not only improve the existing biological functions but also open new avenues for the use of SCnAs in the fields of biology, biotechnology, and pharmaceutical research. In addition, we expect that other interdisciplinary research efforts will accelerate developments in the supramolecular chemistry of SCnAs. © 2014 American Chemical Society.


Guan Y.,Nankai University | Zhang Y.,Nankai University
Chemical Society Reviews | Year: 2013

Boronic acid-containing hydrogels are important intelligent materials. With the introduction of boronic acid functionality, these hydrogels exhibit a lot of interesting properties, such as glucose-sensitivity, reversibility and self-healing. These materials have found important applications in many areas, especially in biomedical areas. This paper aims to provide an overview of the current state of the art of the study in this area. We review the synthesis and properties of various boronic acid-containing hydrogels, including macroscopic hydrogels, microgels and layer-by-layer self-assembled films. Their applications were described, with an emphasis on the design of various glucose sensors and self-regulated insulin delivery devices. New development in this area was highlighted. Problems and the new directions were discussed. © 2013 The Royal Society of Chemistry.


Jin Z.,Nankai University
Natural Product Reports | Year: 2013

Recent progress on the isolation, identification, biological activity and synthetic studies of structurally diverse alkaloids from plants of the family Amaryllidaceae is summarized in this review. In addition, the structurally related alkaloids isolated from Sceletium species are discussed as well. © 2013 The Royal Society of Chemistry.


Jin Z.,Nankai University
Natural Product Reports | Year: 2013

Structurally diverse alkaloids containing five-membered heterocyclic subunits, such as imidazole, oxazole, thiazole, as well as their saturated congeners, are widely distributed in terrestrial and marine organisms and microorganisms. These naturally occurring secondary metabolites often exhibit extensive and pharmacologically important biological activities. The latest progress involving isolation, biological activities, chemical synthetic studies, and biosynthetic pathways of these natural products has been summarized in this review. © 2013 The Royal Society of Chemistry.


Cheng F.,Nankai University | Chen J.,Nankai University
Chemical Society Reviews | Year: 2012

Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries. © The Royal Society of Chemistry 2012.


Jin Z.,Nankai University
Natural Product Reports | Year: 2011

A great number of structurally diverse natural products containing five-membered heterocyclic subunits, such as imidazole, oxazole, thiazole, and their saturated congeners, are abundant in nature. These naturally occurring metabolites often exhibit extensive and pharmacologically important biological activities. The latest progress in the isolation, biological activities, chemical synthetic studies, and biosynthetic pathways on these natural products is summarized in this review. © 2011 The Royal Society of Chemistry.

Loading Nankai University collaborators
Loading Nankai University collaborators