Nanjing, China

Nanjing Tech University , colloquially known as Nan Gong Da , is a university located in Nanjing, Jiangsu Province, China. The university specializes in engineering. English language courses are compulsory. Wikipedia.


Time filter

Source Type

Patent
Nanjing University of Technology | Date: 2014-09-12

The present invention relaters to a method for continuously preparing a nano zinc oxide with a membrane reactor. A zinc salt solution and a precipitator solution required for the preparation of a zinc oxide are respectively used as dispersion phases, and under the action of a certain pressure, the two reaction solutions respectively penetrate through a membrane tube at a certain rate and disperse quickly under the action of a shear force and react, producing a precursor precipitate. A precursor suspension penetrates through the membrane tube continuously and circularly after being pressurized by a pump, and at the same time, deionized water as a washing fluid is added to a suspension storage tank, wherein impurity ions penetrate through membrane pores and are discharged along with the liquid medium; after the concentration of the impurity ions meets requirements, the concentrated solution is discharged continuously and then spray-dried to obtain a basic zinc carbonate precursor powder. The basic zinc carbonate powder is calcined under certain conditions to obtain the nanostructured zinc oxide powder. The continuous preparation and washing of a powder can be achieved by coupling a membrane washing technique with a membrane dispersion technique. The procedure is simple, the structure of zinc oxide is easy to control and the yield is high.


Patent
Nanjing University and Nanjing University of Technology | Date: 2014-10-16

The present invention discloses a device for Fenton fluidized-bed process and a method applying the device for wastewater treatment. It belongs to the wastewater treatment field. The device comprises an adjusting tank, a lift pump and a main reaction column. The adjusting tank is connected to a water distributing trough on the top of the main reaction column through the lift pump; the main reaction column is filled with the packing material, and below the packing material is equipped with an obcone, whereon a plurality of inlets are provided and a slag discharge pipe is connected to the bottom; above the packing material is installed an inclined plate, above which and at the upper end of the main reaction column are arranged with a partitioned trough and an outflow trough; the partitioned trough is evenly divided by a vertical plate into two independent chambers; the upper end of each chamber is connected to the water distributing trough while the lower end of each chamber is designed with an outlet; the outlets of the two independent chambers are connected to the inlets on the obcone through the first circulation pump and the second circulation pump respectively; the outflow trough is installed opposite the partitioned trough. When being used to treat biotreated wastewater, the device disclosed in the present invention can enhance use efficiency of the reagent, and maintain high effect and stability in eliminating iron in the wastewater.


Patent
Nanjing University, Nanjing University of Technology and Est Water And Technologies Co. | Date: 2014-11-18

A water reclamation method on the basis of integrated use of magnetic resin adsorption and electrosorption is provided. It belongs to the water reclamation field, including the following steps: pump the biotreated effluent into a reactor that is filled with magnetic resin particles so that the chromaticity, organic pollutants, total nitrogen, total phosphorus contained in the wastewater can be effectively reduced; channel the fully reacted mixture into a precipitation tank for separation; part of the separated magnetic resin is pumped back into the reactor while the rest of the separated magnetic resin flows into a regeneration tank; the wastewater treated by magnetic resin adsorption then flows into an electrosorption unit for a desalting process; the remaining organic pollutants and inorganic pollutants are further removed.


Patent
Nanjing University of Technology | Date: 2016-11-30

It relates to the field of synthetic macromolecular chemistry, and discloses a method for one-step synthesis of thiol-functionalized polyester polyols by organic catalysis. This method uses lactone monomer as reaction raw material, thiol-alcohol as initiator, and diphenyl phosphate as organic catalyst to catalyze and synthesize the thiol-functionalized polyester polyols. The present invention provides a method which is simple, inexpensive, easily controllable and environmentally friendly to prepare thiol-functionalized polyester polyols with the easily available and controllable catalyst. The method can selectively catalyze the ring opening polymerization of lactone to prepare thiol-functionalized polyester polyols using the organic catalyst.


Patent
Nanjing University of Technology | Date: 2016-11-30

A method for preparing polyesteramides by organocatalysis. The polyesteramides are prepared by a ring-opening polymerization reaction of comonomer under the action of an activator and an initiator, with -caprolactone and -caprolactam taken as the comonomer, and an I type carbene carboxylate compound or an L type carbene carboxylate compound taken as catalysts.


Patent
Nanjing University of Technology | Date: 2016-01-13

A portable rapid detection device for heavy metal ions includes a card electrode and a thin-layer flow cell, wherein a three-electrode system of the card electrode is inserted in a micro-channel of the thin-layer flow cell; and heavy metal ions are detected by using an anodic stripping voltammetry (ASV), a solution to be detected flows by the surface of a working electrode in the micro-channel, and heavy metals are enriched and stripped on the surface thereof.


A method to prepare functional polyester polyols by using micro-reaction device, wherein mixing -caprolactone/-valerolactone monomer with mercapto alcohol evenly with appropriate organic solution under moistureless conditions, and continuously transferring the prepared mixing solution into a micro-reaction device supported with an immobilized enzyme for polymerization to synthetize a poly (-caprolactone/-valerolactone). Compared with the prior art, the present invention achieves a continuous production by using immobilized lipase Novozyme435 as a catalyst.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: WASTE-7-2015 | Award Amount: 7.65M | Year: 2016

Continuing population and consumption growth are driving global food demand, with agricultural activity increasing to keep pace. Europe has a major agricultural waste problem, generating some 700 million tonnes of waste annually. There is an urgent need and huge opportunity to address the efficient use of agricultural wastes, co-products and by-products (AWCB) towards delivering sustainable value chains in the farming and processing sectors. As such, AgroCycle will convert low value agricultural waste into highly valuable products, achieving a 10% increase in waste recycling and valorisation by 2020. This will be achieved by developing a detailed and holistic understanding of the waste streams and piloting a key number of waste utilisation/valorisation pathways. It will bring technologies and systems from ~TRL4 to ~TRL7 within the 3 years of the project. A post-project commercialisation plan will bring commercially promising technologies/systems to TRL8 and TRL9, ensuring AgroCycle will have an enduring impact by achieving sustainable use of AWCB both inside and outside the agricultural sector, leading to the realisation of a Circular Economy. AgroCycle addresses wastes from several agricultural sectors: wine, olive oil, horticulture, fruit, grassland, swine, dairy and poultry. The AgroCycle consortium is a large (25) multi-national group (including China) comprising the necessary and relevant multi-actors (i.e. researchers; companies in the technical, manufacturing, advisory, retail sectors (Large and SMEs); lead users; end users; and trade/producer associations) for achieving the projects ambitions goals. Farmings unique regional (rural) location means that AgroCycle will help reduce the EUs Innovation Divide and address the Regional Smart Specialisation Strategies for each partner country: impact will be Regional with National and International dimensions. The presence of three partners from China ensures international synergies and a global impact.


Patent
Nanjing University of Technology | Date: 2016-06-24

A method for preparing caprolactam by using a microreactor under Lewis acid catalysis, wherein a hydroxyl group in a cyclohexanone oxime is activated to obtain a cyclohexanone oxime sulfonates intermediate, then rearranged under Lewis acid catalysis to prepare the caprolactam. The method of this invention has a simple process and a high operation safety and selectivity, the reaction condition is mild, an efficient reaction can take place even at room temperature, the reaction time is short, the conversion of the cyclohexanone oxime can reach 100% within a short time, the selectivity of the caprolactam can reach 99%, the energy consumption is greatly reduced in the premise of maintaining a high yield, and the production cost is reduced, being an efficient and green and environmentally friendly method of for synthesizing the caprolactam.


Patent
Nanjing University of Technology | Date: 2016-11-09

The invention relates to a high-strength hollow fiber molecular sieve membrane and its preparation method, characterized in that the support of the high-strength molecular sieve membrane has a multi-channel hollow fiber configuration. The preparation method comprises first preparing a crystal seed solution, then immersing the dry support with the multi-channel hollow fiber configuration in the crystal seed solution, and extracting and drying the support to obtain a crystal-seeded support; and finally placing the crystal-seeded support in a molecular sieve membrane synthetic fluid, performing hydrothermal synthesis, and taking out, washing and drying the product to obtain the high-strength hollow fiber molecular sieve membrane. The multi-channel hollow fiber support can provide high mechanical property, which greatly reduces the depreciation rate of the hollow fiber molecular sieve membrane equipment during use. Meanwhile, the multi-channel hollow fiber molecular sieve membrane prepared by the Invention possesses high loading density of permeation flux and membrane module and can reduce the production cost and improve the separation efficiency significantly, and thus lays the foundation for promoting the industrial application of the hollow fiber molecular sieve membrane.

Loading Nanjing University of Technology collaborators
Loading Nanjing University of Technology collaborators