Entity

Time filter

Source Type

Pukou, China

Nanjing University of Information Science and Technology , formerly the Meteorology College of Nanjing University, was established in 1960 by the China Meteorological Administration, then changed the name into Nanjing Institute of Meteorology in May, 1963. NUIST is the oldest institution of higher learning of meteorology science in China.The administration of NUIST handed over from China Meteorological Administration to Jiangsu province in February, 2000. Its present name of Nanjing University of Information Science and Technology was adopted in May, 2004 with authorization by Jiangsu Government and the Ministry of Education of PRC.NUIST offers Associate, Bachelor, Master and Doctorate degree programs in areas including Atmospheric Science, Information Science and Technology, Environmental Science, Engineering, management, literature, economics, laws and agriculture.At Autumn 2010 more than 150 foreign students from 27 countries were studying at NUIST.External PartnershipThe university has established with Yale University, University of Maryland, University of Wisconsin, University of Detroit, University of Edinburgh, University of Reading, University of Toronto, University of Hamburg, Germany, Ireland, Waterford Institute of Technology, Queensland University of Technology 48 famous universities a partnership of scientific research and personnel training, exchange of visiting scholars and students enrolled in undergraduate and graduate departments. The school has the scholarships from Chinese government, Hanban, the Jiangsu province to recruit students. In 2009, the school was founded the "Confucius class" in Bahamas, and it became the fourth Confucius class that Jiangsu Province has found in overseas universities, in 2011, "Confucius class" successfully upgraded to "Confucius Institute". The school has a "World Meteorological Organization Regional Training Center", which has trained more than 1,600 meteorological technicians and managers for 134 countries and regions, and successfully hosted the Tenth World Meteorological Organization Conference of Education and Training and the third session of " quantitative precipitation estimation and forecasting " international conference . In 2010, the World Meteorological Organization Executive Council session on 62 certificates in recognition of the important contribution of the school to make the international meteorological training. Wikipedia.


Geyi W.,Nanjing University of Information Science and Technology
IEEE Transactions on Antennas and Propagation | Year: 2013

This paper studies the optimum design of antennas. The objective function to be maximized is the ratio of gain to quality factor (Q) (i.e., the product of gain and bandwidth) in a specified direction. The theoretical upper bounds for the ratio of gain to Q are first rederived by using the IEEE standard definition of antenna Q. The ratio of gain to Q in a specified direction may be considered as a linear functional of the current distribution, and once it is maximized, an eigenvalue equation can be obtained from the variational principle. This eigenvalue equation can then be solved, yielding an optimum current distribution that maximizes the ratio of gain to Q in the specified direction. A number of numerical examples for small antennas have been presented to demonstrate how the theoretical upper bounds for the ratio of gain to Q can be approached by optimizing the current distributions as well as antenna geometries. © 1963-2012 IEEE. Source


Wang X.,Nanjing University of Information Science and Technology
Journal of the Optical Society of Korea | Year: 2014

In a multi-camera measurement system, the determination of the external parameters is one of the vital tasks, referred to as the calibration of the system. In this paper, a new geometrical calibration method, which is based on the theory of the vanishing line, is proposed. Using a planar target with three equally spaced parallel lines, the normal vector of the target plane can be confirmed easily in every camera coordinate system of the measurement system. By moving the target into more than two different positions, the rotation matrix can be determined from related theory, i.e., the expression of the same vector in different coordinate systems. Moreover, the translation matrix can be derived from the known distance between the adjacent parallel lines. In this paper, the main factors effecting the calibration are analyzed. Simulations show that the proposed method achieves robustness and accuracy. Experimental results show that the calibration can reach 1.25 mm with the range about 0.5m. Furthermore, this calibration method also can be used for auto-calibration of the multi-camera measurement system as the feature of parallels exists widely. © 2014, Optical Society of Korea. All rights reserved. Source


Wang Z.,Nanjing University of Information Science and Technology
Journal of Geophysical Research: Oceans | Year: 2013

We investigate the responses of the Southern Hemisphere subpolar gyres to projected climate changes over the 21st century by Coupled Model Intercomparison Project Phase 3 and 5 models. Under increased greenhouse gas forcing, the Southern Hemisphere westerly winds consistently become intensified, resulting in increased cyclonic wind forcing in the subpolar region in these models. Under such wind forcing changes, it is a robust feature that there are consistent increases in the westward flow close to the coast of Antarctica, with strong implications to the mass balance of the Antarctic ice shelves and ice sheets. However, there are large discrepancies in the responses of the gyre axes and overall gyre strengths. Some models show equatorward expansions of the southern gyre limbs, resulting in consistent and large gyre strength increases, while some other models show poleward contractions of the gyres and generally small and less consistent gyre strength changes. These uncertainties are primarily a result of the uncertain simulations of eddy-driven circulations in the Antarctic Circumpolar Current. The associated buoyancy forcing changes play a secondary role in driving these oceanic responses. This study reveals that there are large uncertainties in the projections of the sub polar circulation in the current generation of coupled climate models, although CMIP5 models have considerably smaller inter-model spreads in the present-day and projected gyre strengths. To predict the subpolar circulation changes, future improved modelling studies need to particularly reduce the uncertainties in the projections of the westerly jet and to reduce the uncertainties in the eddy-driven circulation responses to wind forcing changes. © 2013. American Geophysical Union. All Rights Reserved. Source


Qiu Z.,Nanjing University of Information Science and Technology
Optics Express | Year: 2013

Distribution of the suspended particulate matter (SPM) concentration is a key issue for analyzing the deposition and erosion variety of the estuary and evaluating the material fluxes from river to sea. Satellite remote sensing is a useful tool to investigate the spatial variation of SPM concentration in estuarial zones. However, algorithm developments and validations of the SPM concentrations in Yellow River Estuary (YRE) have been seldom performed before and therefore our knowledge on the quality of retrieval of SPM concentration is poor. In this study, we developed a new simple optical model to estimate SPM concentration in YRE by specifying the optimal wavelength ratios (600-710 nm)/ (530-590 nm) based on observations of 5 cruises during 2004 and 2011. The simple optical model was attentively calibrated and the optimal band ratios were selected for application to multiple sensors, 678/551 for the Moderate Resolution Imaging Spectroradiometer (MODIS), 705/560 for the Medium Resolution Imaging Spectrometer (MERIS) and 680/555 for the Geostationary Ocean Color Imager (GOCI). With the simple optical model, the relative percentage difference and the mean absolute error were 35.4% and 15.6 gm-3 respectively for MODIS, 42.2% and 16.3 gm-3 for MERIS, and 34.2% and 14.7 gm -3 for GOCI, based on an independent validation data set. Our results showed a good precision of estimation for SPM concentration using the new simple optical model, contrasting with the poor estimations derived from existing empirical models. Providing an available atmospheric correction scheme for satellite imagery, our simple model could be used for quantitative monitoring of SPM concentrations in YRE. © 2013 Optical Society of America. Source


Gu B.,Nanjing University of Information Science and Technology
Journal of the Optical Society of America B: Optical Physics | Year: 2012

We propose a single-photon-assisted entanglement concentration protocol (ECP) for nonlocal N-photon systems in a partially entangled pure W-class state with linear optical elements. Only one of the N parties in quantum communication prepares an ancillary photon and operates the entanglement concentration process for picking up the standard N-photon W state from each partially entangled pure W-class state by choosing the two-mode instances from a polarization beam splitter. Compared with other ECPs for W-class states, our protocol has some advantages. First, it requires only linear optical elements. Second, it requires an N-photon system and an ancillary photon for each round of concentration, not two systems. Third, only one party asks other parties to retain or discard their photons. All these advantages make our ECP more feasible and more convenient than others. © 2012 Optical Society of America. Source

Discover hidden collaborations