Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture

Nanjing, China

Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture

Nanjing, China
SEARCH FILTERS
Time filter
Source Type

Ni J.,Nanjing Agricultural University | Yao L.,Nanjing Agricultural University | Zhang J.,Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture | Cao W.,Nanjing Agricultural University | And 2 more authors.
Sensors (Switzerland) | Year: 2017

In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.


Liu N.,Nanjing Agricultural University | Liu N.,Applied Technology Internet | Liu N.,Huaiyin Normal University | Cao W.,Nanjing Agricultural University | And 8 more authors.
Sensors (Switzerland) | Year: 2015

Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters. © 2015 by the authors; licensee MDPI, Basel, Switzerland.


PubMed | Nanjing Agricultural University and Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture
Type: Journal Article | Journal: Sensors (Basel, Switzerland) | Year: 2015

Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters.


PubMed | Nanjing Agricultural University and Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture
Type: Journal Article | Journal: Sensors (Basel, Switzerland) | Year: 2016

Wireless sensor networks (WSNs) are suitable for the continuous monitoring of crop information in large-scale farmland. The information obtained is great for regulation of crop growth and achieving high yields in precision agriculture (PA). In order to realize full coverage and

Loading Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture collaborators
Loading Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture collaborators