Time filter

Source Type

Caniçal, Portugal

Amaral A.R.,University of Lisbon | Amaral A.R.,Macquarie University | Beheregaray L.B.,Flinders University | Bilgmann K.,Macquarie University | And 6 more authors.
Molecular Ecology

Climatic oscillations during the Pleistocene have greatly influenced the distribution and connectivity of many organisms, leading to extinctions but also generating biodiversity. While the effects of such changes have been extensively studied in the terrestrial environment, studies focusing on the marine realm are still scarce. Here we used sequence data from one mitochondrial and five nuclear loci to assess the potential influence of Pleistocene climatic changes on the phylogeography and demographic history of a cosmopolitan marine predator, the common dolphin (genus Delphinus). Population samples representing the three major morphotypes of Delphinus were obtained from 10 oceanic regions. Our results suggest that short-beaked common dolphins are likely to have originated in the eastern Indo-Pacific Ocean during the Pleistocene and expanded into the Atlantic Ocean through the Indian Ocean. On the other hand, long-beaked common dolphins appear to have evolved more recently and independently in several oceans. Our results also suggest that short-beaked common dolphins had recurrent demographic expansions concomitant with changes in sea surface temperature during the Pleistocene and its associated increases in resource availability, which differed between the North Atlantic and Pacific Ocean basins. By proposing how past environmental changes had an effect on the demography and speciation of a widely distributed marine mammal, we highlight the impacts that climate change may have on the distribution and abundance of marine predators and its ecological consequences for marine ecosystems. © 2012 Blackwell Publishing Ltd. Source

Amaral A.R.,University of Lisbon | Amaral A.R.,Macquarie University | Beheregaray L.B.,Macquarie University | Beheregaray L.B.,Flinders University | And 8 more authors.

Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna. © 2012 Amaral et al. Source

Querouil S.,University of The Azores | Querouil S.,Instituto Nacional Of Recursos Biologicos Inrb | Querouil S.,IRD Montpellier | Freitas L.,Museu da Baleia da Madeira | And 10 more authors.
Marine Biology

Several cetacean species exhibit fine-scale population structure despite their high dispersal capacities and the apparent continuity of the marine environment. In dolphins, most studies have focused on coastal areas and continental margins, and they revealed differentiated populations within relatively small geographic areas, sometimes in conjunction with a specialisation for different habitats (ecotypes). We analysed the population genetic structure of short-beaked common dolphins (Delphinus delphis) and Atlantic spotted dolphins (Stenella frontalis) in the Azores and Madeira, the two most isolated archipelagos of the North Atlantic. The archipelago of the Azores is divided into three groups of islands and stands 900 km away from Madeira. It is not known whether individuals migrate between groups of islands and archipelagos, nor whether distinct ecotypes are present. These questions were investigated by genetic analyses of 343 biopsy samples collected on free-ranging dolphins. The analyses consisted in sequencing part of the mitochondrial hyper-variable region, screening up to 14 microsatellite loci, and molecular sexing. Results did not unravel any population structure at the scale of the study area. Lack of differentiation matches expectations for spotted dolphins, which are transient in both archipelagos, but not for common dolphins, which are present year-round in the Azores and potentially resident. Absence of genetic structure over hundreds and even thousands of kilometres implies the existence of gene flow over much larger distances than usually documented in small delphinids, which could be achieved through individual movements. This finding indicates that population structure in oceanic habitat differs from that observed in coastal habitat. © 2010 Springer-Verlag. Source

Querouil S.,University of The Azores | Querouil S.,Montpellier University | Kiszka J.,Florida International University | Cordeiro A.R.,University of The Azores | And 10 more authors.
Marine Biology

Short-beaked common dolphins (Delphinus delphis) and Atlantic spotted dolphins (Stenella frontalis) are the two most abundant cetacean species in the oceanic waters of Madeira and the Azores. They are of similar size, occur in similar habitats and are regularly observed in mixed-species groups to forage together. Genetic analyses suggested that, within each species, dolphins ranging around both archipelagos belong to the same panmictic population. We tested the hypotheses that (1) within each species, individuals from the two archipelagos belong to a single ecological stock; (2) between species, common and spotted dolphins have distinct trophic niches; using fatty acid (FA) and stable isotope (SI) analyses. Fatty acids and stable isotopes were analysed from 86 blubber and 150 skin samples of free-ranging dolphins, respectively. Sex-related differences were not significant, except for common dolphin FA profiles. In S. frontalis, FA and SI differences between archipelagos suggested that individuals belonged to different ecological stocks, despite the existence of gene flow between the two archipelagos. In D. delphis, differences were more pronounced, but it was not possible to distinguish between stock structure and a seasonal effect, due to differential sampling periods in the Azores and Madeira. Inter-specific comparisons were restricted to the Azores where all samples were collected during summer. Differences in FA proportions, noticeably for FA of dietary origin, as well as in nitrogen SI profiles, confirmed that both species feed on distinct resources. This study emphasizes the need for an integrated approach including both genetic and biochemical analyses for stock assessment, especially in wide-ranging marine top predators. © 2013 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations