Time filter

Source Type

Loma Linda, CA, United States

Wergedal J.E.,Musculoskeletal Disease Center | Wergedal J.E.,Loma Linda University | Kesavan C.,Musculoskeletal Disease Center | Kesavan C.,Loma Linda University | And 5 more authors.
Endocrinology | Year: 2015

In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading-induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-μe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (-0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%-70%) reductions in the expression levels of markers of canonical (β-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size. Copyright © 2015 by the Endocrine Society

Cheng S.,Musculoskeletal Disease Center 151 | Xing W.,Musculoskeletal Disease Center 151 | Xing W.,Loma Linda University | Pourteymoor S.,Musculoskeletal Disease Center 151 | And 3 more authors.
Endocrinology | Year: 2016

The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2genein chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (α50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length andosteoid surface perbonesurface in the primary spongiosa of thecKOmice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in themRNAlevels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice. Copyright © 2016 by the Endocrine Society.

Cheng S.,Musculoskeletal Disease Center 151 | Xing W.,Musculoskeletal Disease Center 151 | Xing W.,Loma Linda University | Pourteymoor S.,Musculoskeletal Disease Center 151 | And 2 more authors.
Journal of Bone and Mineral Research | Year: 2014

We have previously shown that the increase in osterix (Osx) expression during osteoblast maturation is dependent on the activity of the prolyl hydroxylase domain-containing protein 2 (Phd2), a key regulator of protein levels of the hypoxia-inducible factor family proteins in many tissues. In this study, we generated conditional Phd2 knockout mice (cKO) in osteoblast lineage cells by crossing floxed Phd2 mice with a Col1α2-iCre line to investigate the function of Phd2 in vivo. The cKO mice developed short stature and premature death at 12 to 14 weeks of age. Bone mineral content, bone area, and bone mineral density were decreased in femurs and tibias, but not vertebrae of the cKO mice compared to WT mice. The total volume (TV), bone volume (BV), and bone volume fraction (BV/TV) in the femoral trabecular bones of cKO mice were significantly decreased. Cross-sectional area of the femoral mid-diaphysis was also reduced in the cKO mice. The reduced bone size and trabecular bone volume in the cKO mice were a result of impaired bone formation but not bone resorption as revealed by dynamic histomorphometric analyses. Bone marrow stromal cells derived from cKO mice formed fewer and smaller nodules when cultured with mineralization medium. Quantitative RT-PCR and immunohistochemistry detected reduced expression of Osx, osteocalcin, and bone sialoprotein in cKO bone cells. These data indicate that Phd2 plays an important role in regulating bone formation in part by modulating expression of Osx and bone formation marker genes. © 2014 American Society for Bone and Mineral Research.

Kim J.,Musculoskeletal Disease Center 151 | Xing W.,Musculoskeletal Disease Center 151 | Xing W.,Loma Linda University | Wergedal J.,Musculoskeletal Disease Center 151 | And 4 more authors.
Physiological Genomics | Year: 2010

Previous in vitro studies found that nuclear factor erythroid-derived 2-like 1 (NFE2L1) was involved in mediating ascorbic acid-induced osterix expression and osteoblast differentiation via binding to the antioxidant response element of the osterix promoter. To test the role of NFE2L1 in regulating bone formation in vivo, we disrupted NFE2L1 specifically in osteoblasts. Mice expressing Cre under the control of Col1α2 promoter were crossed with NFE2L1 loxP mice to generate Cre+ knockout (KO) and Cre- wild-type (WT) mice. Skeletal measurements by DEXA revealed 8-10% and 9-11% reduction in total body BMC and bone area in the KO mice from 3 to 8 wk of age. Peripheral quantitative computed tomography analyses found both periosteal and endosteal circumferences were reduced by 6% at the middiaphysis of the femurs from 8 wk old KO mice. Histomorphometric analyses revealed reduced bone formation was a cause for reduced bone size in the KO mice. Microcomputed tomography analysis of the metaphysis of the femur revealed that trabecular bone volume/total volume, and trabecular numbers were decreased by 30 and 53% in the NFE2L1 KO mice. Expression of osterix was decreased by 57% in the bones of NFE2L1 KO mice. In vitro nodule assay demonstrated that mineralized nodule area was reduced by 68% in the cultures of bone marrow stromal cells from NFE2L1 KO mice. Treatment of primary osteoblasts with ascorbic acid increased osterix expression by fourfold, whereas loss of NFE2L1 in osteoblasts diminished ascorbic acid stimulation of osterix expression by 50%. Our data provide the first in vivo experimental evidence that NFE2L1 produced by osteoblasts is involved in regulating osterix expression, osteoblast differentiation, and bone formation.

Mohan S.,Musculoskeletal Disease Center 151 | Mohan S.,Loma Linda University | Hu Y.,Musculoskeletal Disease Center 151 | Edderkaoui B.,Musculoskeletal Disease Center 151 | Edderkaoui B.,Loma Linda University
Calcified Tissue International | Year: 2013

Studies on the identification of the genetic basis for sexual dimorphism in peak bone mass are obviously important for providing novel therapeutic approaches to prevent or treat metabolic bone diseases. Our goal in this study was to identify the bone microstructure that could lead to differences in volumetric bone mineral density (vBMD) and new candidate genes that regulate the gender effect on bone. We used a congenic line of mice that carry the BMD1-4 locus from CAST/EiJ (CAST) mice in a C57BL/6J (B6) background and show greater vBMD in female, but not male, congenics compared to age- and gender-matched B6 mice. To assess the vBMD variations between the two lines of mice, we performed μCT measurements and found no difference in cortical bone volume by tissue volume (BV/TV) between congenics and B6 mice. However, trabecular BV/TV was significantly greater in female, but not male, congenics compared to corresponding B6 mice, which was due to increased trabecular thickness but not reduced trabecular separation, suggesting that bone formation, but not bone resorption, is responsible for the trabecular bone phenotype observed in the female, but not male, congenics. To identify the gender candidate genes, we determined the polymorphisms between B6 and CAST within the BMD1-4 locus and performed gene expression profiling. We identified EF-hand calcium binding domain (Efcab2), consortin, connexin sorting protein (Cnst), and presenilin 2 (Psen2) as potential candidate genes that regulate bone mass by influencing trabecular thickness in a gender-specific manner. © 2012 Springer Science+Business Media New York.

Discover hidden collaborations