MultiMedica Group

Napoli, Italy

MultiMedica Group

Napoli, Italy

Time filter

Source Type

Yoo S.-A.,Pohang University of Science and Technology | Park J.-H.,Pohang University of Science and Technology | Hwang S.-H.,Pohang University of Science and Technology | Oh S.-M.,Pohang University of Science and Technology | And 12 more authors.
Journal of Immunology | Year: 2015

Inflammation-mediated oncogenesis has been implicated in a variety of cancer types. Rheumatoid synovial tissues can be viewed as a tumor-like mass, consisting of hyperplastic fibroblast-like synoviocytes (FLSs). FLSs of rheumatoid arthritis (RA) patients have promigratory and invasive characteristics, which may be caused by chronic exposure to genotoxic stimuli, including hypoxia and growth factors. We tested whether a transformed phenotype of RA-FLSs is associated with placental growth factor (PlGF), a representative angiogenic growth factor induced by hypoxia. In this study, we identified PlGF-1 and PlGF-2 as the major PlGF isoforms in RA-FLSs. Global gene expression profiling revealed that cell proliferation, apoptosis, angiogenesis, and cell migration were mainly represented by differentially expressed genes in RA-FLSs transfected with small interfering RNA for PlGF. Indeed, PlGF-deficient RA-FLSs showed a decrease in cell proliferation, migration, and invasion, but an increase in apoptotic death in vitro. PlGF gene overexpression resulted in the opposite effects. Moreover, exogeneous PlGF-1 and PlGF-2 increased survival, migration, and invasiveness of RA-FLSs by binding their receptors, Flt-1 and neuropilin-1, and upregulating the expression of antiapoptotic molecules, pErk and Bcl2. Knockdown of PlGF transcripts reduced RA-FLS proliferation in a xenotransplantation model. Collectively, in addition to their role for neovascularization, PlGF-1 and -2 promote proliferation, survival, migration, and invasion of RA-FLSs in an autocrine and paracrine manner. These results demonstrated how primary cells of mesenchymal origin acquired an aggressive and transformed phenotype. PlGF and its receptors thus offer new targets for anti-FLS therapy. Copyright © 2015 by The American Association of Immunologists, Inc.


Cicatiello V.,CNR Institute of Neuroscience | Cicatiello V.,MultiMedica Group | Apicella I.,CNR Institute of Neuroscience | Tudisco L.,CNR Institute of Neuroscience | And 10 more authors.
Oncotarget | Year: 2015

To assess the therapeutic outcome of selective block of VEGFR1, we have evaluated the activity of a new specific antagonist of VEGFR1, named iVR1 (inhibitor of VEGFR1), in syngenic and xenograft colorectal cancer models, in an artificial model of metastatization, and in laser-induced choroid neovascularization. iVR1 inhibited tumor growth and neoangiogenesis in both models of colorectal cancer, with an extent similar to that of bevacizumab, a monoclonal antibody anti-VEGF-A. It potently inhibited VEGFR1 phosphorylation in vivo, determining a strong inhibition of the recruitment of monocyte-macrophages and of mural cells as confirmed, in vitro, by the ability to inhibit macrophages migration. iVR1 was able to synergize with irinotecan determining a shrinkage of tumors that became undetectable after three weeks of combined treatment. Such treatment induced a significant prolongation of survival similar to that observed with bevacizumab and irinotecan combination. iVR1 also fully prevented lung invasion by HCT-116 cells injected in mouse tail vein. Also, iVR1 impressively inhibited choroid neovascularization after a single intravitreal injection. Collectively, data showed the strong potential of iVR1 peptide as a new anti-tumor and anti-metastatic agent and demonstrate the high flexibility of VEGFR1 antagonists as therapeutic anti-angiogenic agents in different pathological contexts.


Filgrastim or methionyl-granulocyte colony-stimulating factor (Met-G-CSF), is a recombinant therapeutic protein widely used to treat severe neutropenia caused by myelosuppressive drugs in patients with nonmyeloid malignancies. In addition to its role in the regulation of granulopoiesis, treatment with G-CSF is considered the standard approach to mobilize CD34 positive (CD34+) mononuclear cells for reconstituting hemopoietic ability for bone marrow transplantation. An intended biosimilar filgrastim (coded BK0023) was produced in GMP conditions by E.coli fermentation according to an original recombinant process and showed physico-chemical properties and purity profile similar to Neupogen®, a commercial preparation of filgrastim. The aim of the present study was to demonstrate the comparability of BK0023 to Neupogen® in terms of both in vitro biological activities and in vivo toxicology, pharmacokinetics and pharmacodynamics. Cell proliferation and radioligand binding assays were conducted in NFS-60 cells to compare the biological activity and functional interaction with the G-CSF receptor in vitro, while preclinical in vivo studies, including pharmacokinetics and pharmacodynamics after repeated dose were performed in normal and neutropenic rats. A phase I study was carried out in healthy male volunteers treated by multiple-dose subcutaneous administration of BK0023 and Neupogen® to evaluate their pharmacodynamic effects as well as their pharmacokinetic and safety profile and to demonstrate their pharmacodynamic equivalence and pharmacokinetic bioequivalence. The results reported in this work demonstrate that BK0023 is comparable in terms of biological activity, efficacy and safety to Neupogen®. BK0023 has the same pharmacokinetic profile, efficacy and safety as the reference commercial filgrastim Neupogen® and therefore could be further developed to become a convenient option to treat neutropenia in oncological patients.


PubMed | Multimedica Group
Type: | Journal: BMC pharmacology & toxicology | Year: 2014

Filgrastim or methionyl-granulocyte colony-stimulating factor (Met-G-CSF), is a recombinant therapeutic protein widely used to treat severe neutropenia caused by myelosuppressive drugs in patients with nonmyeloid malignancies. In addition to its role in the regulation of granulopoiesis, treatment with G-CSF is considered the standard approach to mobilize CD34 positive (CD34+) mononuclear cells for reconstituting hemopoietic ability for bone marrow transplantation. An intended biosimilar filgrastim (coded BK0023) was produced in GMP conditions by E.coli fermentation according to an original recombinant process and showed physico-chemical properties and purity profile similar to Neupogen, a commercial preparation of filgrastim. The aim of the present study was to demonstrate the comparability of BK0023 to Neupogen in terms of both in vitro biological activities and in vivo toxicology, pharmacokinetics and pharmacodynamics.Cell proliferation and radioligand binding assays were conducted in NFS-60 cells to compare the biological activity and functional interaction with the G-CSF receptor in vitro, while preclinical in vivo studies, including pharmacokinetics and pharmacodynamics after repeated dose were performed in normal and neutropenic rats. A phase I study was carried out in healthy male volunteers treated by multiple-dose subcutaneous administration of BK0023 and Neupogen to evaluate their pharmacodynamic effects as well as their pharmacokinetic and safety profile and to demonstrate their pharmacodynamic equivalence and pharmacokinetic bioequivalence.The results reported in this work demonstrate that BK0023 is comparable in terms of biological activity, efficacy and safety to Neupogen.BK0023 has the same pharmacokinetic profile, efficacy and safety as the reference commercial filgrastim Neupogen and therefore could be further developed to become a convenient option to treat neutropenia in oncological patients.

Loading MultiMedica Group collaborators
Loading MultiMedica Group collaborators