Time filter

Source Type

Ouagadougou, Burkina Faso

Kristiansen P.A.,Norwegian Institute of Public Health | Diomande F.,WHO Inter Country Support Team | Diomande F.,Centers for Disease Control and Prevention | Ouedraogo R.,University of Ouagadougou | And 12 more authors.
Journal of Clinical Microbiology

Neisseria lactamica is a true commensal bacterium occupying the same ecological niche as the pathogenic Neisseria meningitidis, which is responsible for outbreaks and large epidemics, especially in sub-Saharan Africa. To better understand the epidemiology of N. lactamica in Africa and its relationship to N. meningitidis, we studied N. lactamica carriage in 1- to 29-year-old people living in three districts of Burkina Faso from 2009 to 2011. N. lactamica was detected in 18.2% of 45,847 oropharyngeal samples. Carriage prevalence was highest among the 2-year-olds (40.1%) and decreased with age. Overall prevalence was higher for males (19.1%) than females (17.5%) (odds ratio [OR], 1.11; 95% confidence interval [CI], 1.04 to 1.18), while among the 18- to 29-year-olds, carriage prevalence was significantly higher in women (9.1%) than in men (3.9%) (OR, 2.49; 95% CI, 1.94 to 3.19). Carriage prevalence of N. lactamica was remarkably homogeneous in the three districts of Burkina Faso and stable over time, in comparison with carriage of N. meningitidis (P. A. Kristiansen et al., Clin. Vaccine Immunol. 18:435-443, 2011). There was no significant seasonal variation of N. lactamica carriage and no significant change in carriage prevalence after introduction of the serogroup A meningococcal conjugate vaccine, MenAfriVac. Multilocus sequence typing was performed on a selection of 142 isolates. The genetic diversity was high, as we identified 62 different genotypes, of which 56 were new. The epidemiology of N. lactamica carriage and the molecular characteristics of carried isolates were similar to those reported from industrialized countries, in contrast to the particularities of N. meningitidis carriage and disease epidemiology in Burkina Faso. Copyright © 2012, American Society for Microbiology. All Rights Reserved. Source

Gopal H.,National Polytechnic Institute of Mexico | Hassan H.K.,University of South Florida | Rodriguez-Perez M.A.,National Polytechnic Institute of Mexico | Toe L.D.,Multi Disease Surveillance Center | And 2 more authors.
PLoS Neglected Tropical Diseases

Background: Entomological surveys of Simulium vectors are an important component in the criteria used to determine if Onchocerca volvulus transmission has been interrupted and if focal elimination of the parasite has been achieved. However, because infection in the vector population is quite rare in areas where control has succeeded, large numbers of flies need to be examined to certify transmission interruption. Currently, this is accomplished through PCR pool screening of large numbers of flies. The efficiency of this process is limited by the size of the pools that may be screened, which is in turn determined by the constraints imposed by the biochemistry of the assay. The current method of DNA purification from pools of vector black flies relies upon silica adsorption. This method can be applied to screen pools containing a maximum of 50 individuals (from the Latin American vectors) or 100 individuals (from the African vectors). Methodology/Principal Findings: We have evaluated an alternative method of DNA purification for pool screening of black flies which relies upon oligonucleotide capture of Onchocerca volvulus genomic DNA from homogenates prepared from pools of Latin American and African vectors. The oligonucleotide capture assay was shown to reliably detect one O. volvulus infective larva in pools containing 200 African or Latin American flies, representing a two-four fold improvement over the conventional assay. The capture assay requires an equivalent amount of technical time to conduct as the conventional assay, resulting in a two-four fold reduction in labor costs per insect assayed and reduces reagent costs to $3.81 per pool of 200 flies, or less than $0.02 per insect assayed. Conclusions/Significance: The oligonucleotide capture assay represents a substantial improvement in the procedure used to detect parasite prevalence in the vector population, a major metric employed in the process of certifying the elimination of onchocerciasis. © 2012 Gopal et al. Source

Kristiansen P.A.,Norwegian Institute of Public Health | Diomande F.,WHO Inter Country Support Team | Diomande F.,Centers for Disease Control and Prevention | Wei S.C.,Centers for Disease Control and Prevention | And 19 more authors.
Clinical and Vaccine Immunology

The serogroup A meningococcal conjugate vaccine MenAfriVac has the potential to confer herd immunity by reducing carriage prevalence of epidemic strains. To better understand this phenomenon, we initiated a meningococcal carriage study to determine the baseline carriage rate and serogroup distribution before vaccine introduction in the 1- to 29-year old population in Burkina Faso, the group chosen for the first introduction of the vaccine. A multiple cross-sectional carriage study was conducted in one urban and two rural districts in Burkina Faso in 2009. Every 3 months, oropharyngeal samples were collected from >5,000 randomly selected individuals within a 4-week period. Isolation and identification of the meningococci from 20,326 samples were performed by national laboratories in Burkina Faso. Confirmation and further strain characterization, including genogrouping, multilocus sequence typing, and porA-fetA sequencing, were performed in Norway. The overall carriage prevalence for meningococci was 3.98%; the highest prevalence was among the 15- to 19-year-olds for males and among the 10- to 14-year-olds for females. Serogroup Y dominated (2.28%), followed by serogroups X (0.44%), A (0.39%), and W135 (0.34%). Carriage prevalence was the highest in the rural districts and in the dry season, but serogroup distribution also varied by district. A total of 29 sequence types (STs) and 51 porA-fetA combinations were identified. The dominant clone was serogroup Y, ST-4375, P1.5-1,2-2/F5-8, belonging to the ST-23 complex (47%). All serogroup A isolates were ST-2859 of the ST-5 complex with P1.20,9/F3-1. This study forms a solid basis for evaluating the impact of MenAfriVac introduction on serogroup A carriage. Copyright © 2011, American Society for Microbiology. All Rights Reserved. Source

Weidmann M.,University of Gottingen | Sall A.A.,L Institute Pasteur Of Dakar | Manuguerra J.-C.,Institute Pasteur Paris | Koivogui L.,University Of Conakry | And 5 more authors.
Virology Journal

Information on the replication of viral haemorrhagic fever viruses is not readily available and has never been analysed in a comparative approach. Here, we compared the cell culture growth characteristics of haemorrhagic fever viruses (HFV), of the Arenaviridae, Filoviridae, Bunyaviridae, and Flavivridae virus families by performing quantitative analysis of cell culture supernatants by (i) electron microscopy for the quantification of virus particles, (ii) quantitative real time PCR for the quantification of genomes, and (iii) determination of focus forming units by coating fluorescent antibodies to infected cell monolayers for the quantification of virus infectivity. The comparative analysis revealed that filovirus and RVFV replication results in a surplus of genomes but varying degrees of packaging efficiency and infectious particles. More efficient replication and packaging was observed for Lassa virus, and Dengue virus resulting in a better yield of infectious particles while, YFV turned out to be most efficient with only 4 particles inducing one FFU. For Crimean-Congo haemorrhagic fever virus (CCHFV) a surplus of empty shells was observed with only one in 24 particles equipped with a genome. The complete particles turned out to be extraordinarily infectious. © 2011 Weidmann et al; licensee BioMed Central Ltd. Source

Sam-Wobo S.O.,Abeokuta Federal University of Agriculture | Adeleke M.A.,Osun State University | Jayeola O.A.,Abeokuta Federal University of Agriculture | Adeyi A.O.,University of Ibadan | And 8 more authors.
International Journal of Tropical Insect Science

Seasonal fluctuations of the Simulium damnosum Theobald complex and the prevalence of Onchocerca volvulus Bickel in blackflies caught in river systems bordering the Nigeria-Benin border were assessed for their direct impact on the epidemiology of onchocerciasis in South-western Nigeria. Entomological evaluation and heteroduplex assay (HDA) techniques were performed on flies caught in the eight capture points in the Ogun and Yewa river systems between October and December 2007, July and December 2008 and May and December 2009. A total of 5789 blackflies were caught on human bait, of which 727 (12.6%) flies were captured in 2007, 1723 (29.8%) in 2008 and 3339 (57.6%) in 2009. The majority of flies caught during the study were forest flies representing 90.3% of the total catch while savanna flies constituted 9.7%. Proportions of parous to nulliparous flies were low in all the catching points (31.1 and 68.9%, respectively). Of the 5789 flies dissected, 11 (0.2%) flies were infected with Onchocerca parasites with nine of the infected flies having L3 head parasites. The HDA results revealed that the Beffa form of S. soubrense was the dominant cytospecies present (87.1%) in all the capture sites when compared with 12.9% of S. damnosum s.s. The low level of infectivity of flies may therefore indicate a low transmission level of onchocerciasis in the communities along the Ogun and Yewa river systems. However, there is a need for constant surveillance on species composition and fly infectivity in the river systems along the borders of Nigeria-Benin Republic. © 2013 icipe. Source

Discover hidden collaborations