Muc Womens College

West Bengal, India

Muc Womens College

West Bengal, India
SEARCH FILTERS
Time filter
Source Type

Majumdar P.,Muc Womens College | Samanta S.K.,Visva Bharati
Computers and Mathematics with Applications | Year: 2010

In this paper, we define generalised fuzzy soft sets and study some of their properties. Application of generalised fuzzy soft sets in decision making problem and medical diagnosis problem has been shown. © 2009 Elsevier Ltd. All rights reserved.


Majumdar P.,Muc Womens College | Samanta S.K.,Visva Bharati
Journal of Intelligent and Fuzzy Systems | Year: 2014

In this paper we have introduced the notion of distance between two single valued neutrosophic sets and studied its properties. We have also defined several similarity measures between them and investigated their characteristics. A measure of entropy of a single valued neutrosophic set has also been introduced. © 2014 - IOS Press and the authors. All rights reserved.


Garai S.K.,Muc Womens College
Journal of Modern Optics | Year: 2013

Conventional binary logic based operations restrict the speed of operations as well as information handling capacity. A way to overcome these limitations is the implementation of multivalued logic operations in the optical domain. Multivalued logic operations not only enhance the data handling capacities but also increase the speed of processing. integrating enormous potential bandwidth of optical fiber as information carrying medium and faster optoelectronic/ optical switches with no hardware complexity. A new method is proposed for the implementation of all-optical quaternary inversion, MAX, MIN, and equality operations using frequency-encoded data. Cross phase modulation-based frequency conversion, polarization switch (PSW) characteristics of a semiconductor optical amplifier (SOA), frequency routing by a wave division multiplexer (MUX), and a demultiplexer (DMUX) have been exploited to implement the desired quaternary logic operations. Simulation results support the feasibility of the proposed scheme. © 2013 Copyright Taylor and Francis Group, LLC.


Garai S.K.,Muc Womens College
Optics and Laser Technology | Year: 2015

All optical multivalued logic processors are of paramount importance in optical computing and signal processing. In this communication, the author proposes a new method of developing all-optical quaternary logic gates which are the extension of binary logic gates. To develop the quaternary logic gate the authors first coverts the quaternary frequency encoded data into equivalent binary intensity encoded data; then binary logic operations are done among the equivalent binary data, and finally the intensity encoded data outputs are converted into frequency encoded quaternary logic output. Simulation result supports the feasibility of the proposed scheme. Novelty of the scheme is that the same optical circuit is dedicated to implement any two-input quaternary logic operation only by changing two basic switches functioning as binary logic gates. Finally, the authors have cascaded these logic gates using "1 x 2" all-optical switches to develop quaternary logic unit by means of which any kind of quaternary logic operation as proposed in this scheme can be performed. Dense wavelength division demultiplexers (DMUX) are used here for wavelength routing purpose, and switching and frequency conversion characters of semiconductor optical amplifiers are exploited to develop very fast and secure quaternary logic unit. © 2014 Elsevier Ltd. All rights reserved.


Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4 bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1 bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of :decimal to binary, BCD, binary to gray, and gray to binary" data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semiconductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion. © 2011 Optical Society of America.


An all-optical arithmetic and logic unit is the integral part of optical computing and data processing. In this paper, the author proposes a method to develop an all-optical arithmetic and logic unit by means of which so many binary logic operations such as AND, OR, NAND, NOR, EXOR, data comparator etc., as well as some arithmetic operations, such as half-addition, half-subtraction, full-addition, full-subtraction multiplication, etc., can be performed by properly selecting the frequencies of the control signals and using the frequency encoded input data. For this purpose, the author has exploited the frequency conversion scheme of semiconductor optical amplifier (SOA) using nonlinear polarization rotation character of the probe beam in SOA and, cross-gain modulation character of reflecting semiconductor optical amplifier (RSOA). Frequency-dependent optical beam routing to different channels have done using optical add/drop multiplexer made of SOA with multiquantum well structure. Frequency conversion efficiency of SOA and RSOA are very high as well as switching speed of SOA is very fast with very good ON-OFF contrast ratio. © 2006 IEEE.


The ever increasing demand for very fast and agile optical networks requires very fast execution of different optical and logical operations as well as large information handling capacities at the same time. In conventional binary logic based operations the information is represented by two distinct states only (0 and 1 state). It limits the large information handling capacity and speed of different arithmetic and optical logic operations. Tristate based logic operations can be accommodated with optics successfully in data processing, as this type of operation can enhance the speed of operation as well as increase the information handling capacity. Here in this communication the author proposes a new method to implement all-optical different logic gates with tristate logic using the frequency-encoding principle. The frequency encoding/decoding based optical communication has distinctly great advantages because the frequency is the fundamental character of an optical signal and it preserves its identity throughout the communication. The principle of the rotation of the state of polarization of a probe beam through semiconductor optical amplifier (SOA), frequency routing property of an optical add/drop multiplexer (AD) and high frequency conversion property of reflecting semiconductor optical amplifiers (RSOA) have been exploited here to implement the desired AND, OR, NAND and NOR logic operations with tristate logic. © 2010 Taylor & Francis.


Garai S.K.,Muc Womens College
Optics Communications | Year: 2014

All optical reversible logic gates have significant applications in the field of optics and optoelectronics for developing different sequential and combinational circuits of optical computing, optical signal processing and in multi-valued logic operations and quantum computing. Here the author proposes a method for developing all optical three-input-output Fredkin gate and modified Fredkin gate using frequency encoded data. For this purpose the author has exploited the properties of efficient frequency conversion and faster switching speed of semiconductor optical amplifiers. Simulation results of the three input-output Fredkin gate testifies to the feasibility of the proposed scheme. These Fredkin gates are universal logic gates, and can be used to develop different all-optical logic and data processors in communication network. © 2013 Elsevier B.V. All rights reserved.


Optical data comparator is the part and parcel of arithmetic and logical unit of any optical data processor and it is working as a building block in a larger optical circuit, as an optical switch in all optical header processing and optical packet switching based all optical telecommunications system. In this article the author proposes a method of developing an all optical single bit comparator unit and subsequently extending the proposal to develop a n-bit comparator exploiting the nonlinear rotation of the state of polarization of the probe beam in semiconductor optical amplifier (SOA). Here the dataset to be compared are taken in frequency encoded/decoded form throughout the communication. The major advantages of frequency encoding over all other conventional techniques are that as the frequency of any signal is fundamental one so it can preserve its identity throughout the communication of optical signal and minimizes the probability of bit error problem. For frequency routing purpose optical add/drop multiplexer (ADM) is used which not only route the pump beams properly but also to amplify the pump beams efficiently. Switching speed of 'MZI-SOA switch' as well as SOA based switches are very fast with good onoff contrast ratio and as a result it is possible to obtain very fast action of optical data comparator. © 2010 Elsevier Ltd. All rights reserved.


Reversible logic gates have attracted significant attention to the researchers in the field of optics and optoelectronics as it has wide applications in sequential and combinational circuit of optical computing, optical signal processing and in multi-valued logic operations. Several all-optical reversible logic gates have been proposed such as controlled NOT (Feynman gate), Fredkin gate, Toffoli gate, New Gate, Peres gate etc. The beauty of all these reversible conservative logic gates is that all types of arithmetic and logical operation can be performed with these gates with lower hardware complexity and without loss of any input information. To perform these logic operations, encoding and decoding of optical signals are of great important issues. In this communication the author presents a method of designing all optical Fredkin gate and Toffoli gate using frequency encoding/decoding techniques because of several inherent advantages of this encoding/decoding. To develop the method of designing these two reversible logic gates, non-linear polarisation rotation of the probe beam, frequency routing and frequency conversion properties of semiconductor optical amplifiers have been exploited which will give very high operational speed (of the order of THz) with very good on/off contrast ratio. © 2011 The Institution of Engineering and Technology.

Loading Muc Womens College collaborators
Loading Muc Womens College collaborators