Nanjing, China
Nanjing, China

Time filter

Source Type

Liao G.,China Pharmaceutical University | Liao G.,Simcere Pharmaceutical Co. | Liao G.,BioSciKin Co. | Liao G.,MtC BioPharma Co. | And 7 more authors.
Cellular Signalling | Year: 2014

Metastases are the major cause of death from cancer. IGF-1 signaling pathway has been shown to have strong implication in the epithelial-mesenchymal transition (EMT) process. However, the mechanisms of how IGF-1 promotes EMT have not been fully elucidated. Mucin 1 (MUC1), a transmembrane glycoprotein, engages in multiple cancer-related signaling pathways and functions as an oncoprotein that contributes to metastases. Here we provide evidence showing that IGF-1 upregulates MUC1 expression in MCF-7 cells in a PI3K/Akt signaling pathway-dependent manner. The overexpression of MUC1 is critical for IGF-1-induced EMT of MCF-7 cells because the knockdown of MUC1 prevented the EMT of MCF-7 cells as demonstrated by various EMT markers including the expression of E-cadherin, N-cadherin, vimentin, fibronectin and the nuclear translocalization of β-catenin. On the other hand, the knockdown of MUC1 had no impact on IGF-1-induced activation of PI3K/Akt or MAPK. In summary, our study demonstrated MUC1 as a critical downstream effector that mediates IGF-1-induced EMT of MCF-7 cells and suggested that MUC1 might be a potential therapeutic target for preventing tumor metastases. © 2014 Elsevier Inc.


Mo S.-F.,Nanjing University | Mo S.-F.,MtC BioPharma Co. | Mo S.-F.,Simcere Pharmaceutical Co. | Liao G.-Y.,MtC BioPharma Co. | And 12 more authors.
Brain Research | Year: 2016

Stroke is a major public health problem leading to high rates of death and disability in adults. Coupling of postsynaptic density protein-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) plays an important part in neuronal damage caused by stroke. Recent studies suggest the possibility of alleviating post ischemia neuron damage by blocking ischemia-induced nNOS-PSD-95 association. Here, we report a small-molecular inhibitor of nNOS-PSD-95 interaction, SCR-4026, which exhibits neuroprotective activities in NMDA-induced or Oxygen and glucose deprivation (OGD)-induced neuronal damage in primary cortical neurons cultures, and ameliorated focal cerebral ischemic damage in rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Furthermore, we found that SCR-4026 was also able to promote neural stem cells to differentiate into neurons-like cells, which is potentially of great significance for neural protection. Taken together, SCR-4026 is identified as a novel small molecule that shows great potential in treating stroke. © 2016 Elsevier B.V.


PubMed | Nanjing University, MtC BioPharma Co. and China Pharmaceutical University
Type: Journal Article | Journal: Brain research | Year: 2016

Stroke is a major public health problem leading to high rates of death and disability in adults. Coupling of postsynaptic density protein-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) plays an important part in neuronal damage caused by stroke. Recent studies suggest the possibility of alleviating post ischemia neuron damage by blocking ischemia-induced nNOS-PSD-95 association. Here, we report a small-molecular inhibitor of nNOS-PSD-95 interaction, SCR-4026, which exhibits neuroprotective activities in NMDA-induced or Oxygen and glucose deprivation (OGD)-induced neuronal damage in primary cortical neurons cultures, and ameliorated focal cerebral ischemic damage in rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Furthermore, we found that SCR-4026 was also able to promote neural stem cells to differentiate into neurons-like cells, which is potentially of great significance for neural protection. Taken together, SCR-4026 is identified as a novel small molecule that shows great potential in treating stroke.

Loading MtC BioPharma Co. collaborators
Loading MtC BioPharma Co. collaborators