Time filter

Source Type

Virag L.,Debrecen University | Virag L.,Mta Of Cell Biology And Signaling Research Group
Molecular Aspects of Medicine | Year: 2013

The seminal paper published in 1963 by Chambon, Weil and Mandel reporting a new NAD-dependent protein modification now known as poly(ADP-ribosyl)ation (PARylation) marked the launch of a new era in both protein research and cell biology. In the coming decades, the identity, biochemical characteristics and regulation of enzymes responsible for the synthesis and degradation of protein-bound poly(ADP-ribose) have been discovered and the surprisingly multifarious biological roles of PARylation have not ceased to amaze cell and molecular biologists ever since. The review series on PARylation following this preface is comprised of ten papers written by great experts of the field and aims to provide practicing physicians and basic scientists with the state-of-the-art on the "writers, readers and erasers" of poly(ADP-ribose), some recent paradigm shifts of the field and its translational potential. © 2013 Elsevier Ltd. All rights reserved.

Xu S.,Sun Yat Sen University | Xu S.,U.S. National Institutes of Health | Bai P.,Debrecen University | Bai P.,Mta Of Cell Biology And Signaling Research Group | And 2 more authors.
Medicinal Research Reviews | Year: 2014

Poly(ADP-ribosyl)ation reactions, carried out by poly(ADP-ribose) polymerases (PARPs/ARTDs), are reversible posttranslational modifications impacting on numerous cellular processes (e.g., DNA repair, transcription, metabolism, or immune functions). PARP1 (EC, the founding member of PARPs, is particularly important for drug development for its role in DNA repair, cell death, and transcription of proinflammatory genes. Recent studies have established a novel concept that PARP1 is critically involved in the formation and destabilization of atherosclerotic plaques in experimental animal models and in humans. Reduction of PARP1 activity by pharmacological or molecular approaches attenuates atherosclerotic plaque development and enhances plaque stability as well as promotes the regression of pre-established atherosclerotic plaques. Mechanistically, PARP1 inhibition significantly reduces monocyte differentiation, macrophage recruitment, Sirtuin 1 (SIRT1) inactivation, endothelial dysfunction, neointima formation, foam cell death, and inflammatory responses within plaques, all of which are central to the pathogenesis of atherosclerosis. This article presents an overview of the multiple roles and underlying mechanisms of PARP1 activation (poly(ADP-ribose) accumulation) in atherosclerosis and emphasizes the therapeutic potential of PARP1 inhibition in preventing or reversing atherosclerosis and its cardiovascular clinical sequalae. © 2013 Wiley Periodicals, Inc.

Burkle A.,University of Konstanz | Virag L.,Debrecen University | Virag L.,Mta Of Cell Biology And Signaling Research Group
Molecular Aspects of Medicine | Year: 2013

Poly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification (PTM) catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARPs use NAD+ as substrate and upon cleaving off nicotinamide they transfer the ADP-ribosyl moiety covalently to suitable acceptor proteins and elongate the chain by adding further ADP-ribose units to create a branched polymer, termed poly(ADP-ribose) (PAR), which is rapidly degraded by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). In recent years several key discoveries changed the way we look at the biological roles and mode of operation of PARylation. These paradigm shifts include but are not limited to (1) a single PARP enzyme expanding to a PARP family; (2) DNA-break dependent activation extended to several other DNA dependent and independent PARP-activation mechanisms; (3) one molecular mechanism (covalent PARylation of target proteins) underlying the biological effect of PARPs is now complemented by several other mechanisms such as protein-protein interactions, PAR signaling, modulation of NAD+ pools and (4) one principal biological role in DNA damage sensing expanded to numerous, diverse biological functions identifying PARP-1 as a real moonlighting protein. Here we review the most important paradigm shifts in PARylation research and also highlight some of the many controversial issues (or paradoxes) of the field such as (1) the mostly synergistic and not antagonistic biological effects of PARP-1 and PARG; (2) mitochondrial PARylation and PAR decomposition, (3) the cross-talk between PARylation and signaling pathways (protein kinases, phosphatases, calcium) and the (4) divergent roles of PARP/PARylation in longevity and in age-related diseases. © 2013 Elsevier Ltd. All rights reserved.

Kerekes T.,Debrecen University | Kokai E.,Debrecen University | Paldy F.S.,Hungarian Academy of Sciences | Dombradi V.,Debrecen University | Dombradi V.,Mta Of Cell Biology And Signaling Research Group
Insect Biochemistry and Molecular Biology | Year: 2014

The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D.melanogaster. © 2014 Elsevier Ltd.

Canto C.,Nestle | Sauve A.A.,New York Medical College | Bai P.,Debrecen University | Bai P.,Mta Of Cell Biology And Signaling Research Group
Molecular Aspects of Medicine | Year: 2013

Poly(ADP-ribose) polymerases (PARPs) are NAD+ dependent enzymes that were identified as DNA repair proteins, however, today it seems clear that PARPs are responsible for a plethora of biological functions. Sirtuins (SIRTs) are NAD+-dependent deacetylase enzymes involved in the same biological processes as PARPs raising the question whether PARP and SIRT enzymes may interact with each other in physiological and pathophysiological conditions. Hereby we review the current understanding of the SIRT-PARP interplay in regard to the biochemical nature of the interaction (competition for the common NAD+ substrate, mutual posttranslational modifications and direct transcriptional effects) and the physiological or pathophysiological consequences of the interactions (metabolic events, oxidative stress response, genomic stability and aging). Finally, we give an overview of the possibilities of pharmacological intervention to modulate PARP and SIRT enzymes either directly, or through modulating NAD+ homeostasis. © 2013 Elsevier Ltd. All rights reserved.

Discover hidden collaborations