Time filter

Source Type

Hodson C.,Cancer Research UK Research Institute | Purkiss A.,Cancer Research UK Research Institute | Miles J.A.,Cancer Research UK Research Institute | Walden H.,Cancer Research UK Research Institute | Walden H.,MRC Protein Phosphorylation and Ubiquitylation Unit
Structure | Year: 2014

The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. © 2014 The Authors.

Paradela-Dobarro B.,Institute Investigacion Sanitaria Of Santiago Idis | Rodino-Janeiro B.K.,Institute Investigacion Sanitaria Of Santiago Idis | Alonso J.,Institute Investigacio N Sanitaria Of Santiago Idis | Alonso J.,MRC Protein Phosphorylation and Ubiquitylation Unit | And 5 more authors.
Journal of Molecular Endocrinology | Year: 2015

Most of the studies on advanced glycation end products (AGE) have been carried out with uncharacterized mixtures of AGE, so the observed effects cannot be linked to defined structures. Therefore, we analysed the structural differences between glycated human serum albumin (gHSA), a low glycated protein, and AGE-human serum albumin (AGE-HSA), a high glycated protein, and we compared their effects on endothelial functionality. Specifically, we characterized glycation and composition on both early and advanced stage glycation products of gHSA and AGE-HSA by using the MALDI-TOF-mass spectrometry assay. Furthermore, we studied the effects of both types of glycation products on reactive oxygen species (ROS) production and in the expression of vascular and intercellular cell adhesion molecules (VCAM-1 and ICAM-1) on human umbilical endothelial cells (HUVEC). We also measured the adhesion of peripheral blood mononuclear cells (PBMC) to HUVEC. Low concentrations of gHSA enhanced long-lasting ROS production in HUVEC, whereas lower concentrations of AGE-HSA caused the anticipation of the induced extracellular ROS production. Both gHSA and AGE-HSA up-regulated the expression of VCAM-1 and ICAM-1 at mRNA levels. Nevertheless, only AGE-HSA increased protein levels and enhanced the adhesion of PBMC to HUVEC monolayers. Functional differences were observed between gHSA and AGE-HSA, causing the latter an anticipation of the pro-oxidant effects in comparison to gHSA. Moreover, although both molecules induced genetic up-regulation of adhesion molecules in HUVEC, only the high glycated protein functionally increased mononuclear cell adhesion to endothelial monolayers. These observations could have important clinical consequences in the development of diabetic vascular complications. © 2016 Society for Endocrinology.

Ozanne J.,MRC Protein Phosphorylation and Ubiquitylation Unit | Prescott A.R.,Sir James Black Center | Clark K.,MRC Protein Phosphorylation and Ubiquitylation Unit
Biochemical Journal | Year: 2015

Macrophages switch to an anti-inflammatory, 'regulatory'-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of 'regulatory'-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of 'regulatory'-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of 'regulatory'-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects ofbosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory properties of these drugs. © 2015 The Author(s).

Discover hidden collaborations