Time filter

Source Type

Yen J.,Wellcome Trust Sanger Institute | White R.M.,Sloan Kettering Cancer Center | Wedge D.C.,Wellcome Trust Sanger Institute | Van Loo P.,Wellcome Trust Sanger Institute | And 38 more authors.
Genome Biology | Year: 2013

Background: Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. Results: To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.Conclusion: This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation. © 2013 Yen et al.; licensee BioMed Central Ltd.

Gunther C.,TU Dresden | Kind B.,TU Dresden | Reijns M.A.M.,University of Edinburgh | Berndt N.,TU Dresden | And 46 more authors.
Journal of Clinical Investigation | Year: 2015

Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.

Rosario R.,Queens Medical Research Institute | Adams I.R.,MRC Institute of Genetics and Molecular Medicine | Anderson R.A.,Queens Medical Research Institute
Molecular Human Reproduction | Year: 2016

The RNA binding protein deleted in azoospermia-like (Dazl) is a key determinant of germ cell maturation and entry into meiosis inrodents and other animal species. Although the complex phenotype of Dazl deficiency in both sexes, with defects at multiple stages of germ cell development and during meiosis, demonstrates its obligate significance in fertility in animal models, its involvement in human fertility is less clear.As an RNA binding protein, identification of the in vivom RNA targets of DAZL is necessary to understand its influence. Thus far, only a small number of Dazl targets have been identified, which typically have pivotal roles in germ cell development and meiotic progression. However, it is likely thatthere are a number of additional germ cell and meiosis-relevant transcripts whose translation is affected in the absence of Dazl. Efforts to identify these RNA targets have mainly been focused on spermatogenesis, and restricted to mouse. In women, prophase I occurs in fetal life and it is during this period that the ovarian follicle pool is established, thus factors that have a role in determining the quality and quantity of the ovarian reserve may have significant impact on reproductive outcomes later in adult life. Here, we suggest that DAZL may be one such factor, and there is a need forgreater understanding of the role of DAZL in human oogenesis and its contribution to lifelong female fertility. © The Author 2016.

Blakeley P.,University of Manchester | Blakeley P.,Wellcome Trust Sanger Institute | Overton I.M.,MRC Institute of Genetics and Molecular Medicine | Hubbard S.J.,University of Manchester
Journal of Proteome Research | Year: 2012

Proteogenomics has the potential to advance genome annotation through high quality peptide identifications derived from mass spectrometry experiments, which demonstrate a given gene or isoform is expressed and translated at the protein level. This can advance our understanding of genome function, discovering novel genes and gene structure that have not yet been identified or validated. Because of the high-throughput shotgun nature of most proteomics experiments, it is essential to carefully control for false positives and prevent any potential misannotation. A number of statistical procedures to deal with this are in wide use in proteomics, calculating false discovery rate (FDR) and posterior error probability (PEP) values for groups and individual peptide spectrum matches (PSMs). These methods control for multiple testing and exploit decoy databases to estimate statistical significance. Here, we show that database choice has a major effect on these confidence estimates leading to significant differences in the number of PSMs reported. We note that standard target:decoy approaches using six-frame translations of nucleotide sequences, such as assembled transcriptome data, apparently underestimate the confidence assigned to the PSMs. The source of this error stems from the inflated and unusual nature of the six-frame database, where for every target sequence there exists five "incorrect" targets that are unlikely to code for protein. The attendant FDR and PEP estimates lead to fewer accepted PSMs at fixed thresholds, and we show that this effect is a product of the database and statistical modeling and not the search engine. A variety of approaches to limit database size and remove noncoding target sequences are examined and discussed in terms of the altered statistical estimates generated and PSMs reported. These results are of importance to groups carrying out proteogenomics, aiming to maximize the validation and discovery of gene structure in sequenced genomes, while still controlling for false positives. © 2012 American Chemical Society.

Patton E.E.,MRC Institute of Genetics and Molecular Medicine
Journal of Pathology | Year: 2012

Non-cancerous immune cells can significantly contribute to tumour progression and metastases. Neutrophils associated with tumours can both promote and inhibit tumour progression, but less is known about how non-associated immune cells contribute to cancer biology. In a recent issue of the Journal of Pathology, He and colleagues use non-invasive, high-resolution imaging of the whole living animal to provide a compelling glimpse at how physiological migration of neutrophils can prepare a metastatic niche and how their activities can be altered by the unintended consequences of targeted therapeutics. © 2012 Pathological Society of Great Britain and Ireland.

Discover hidden collaborations