Entity

Time filter

Source Type

Cambridge, United Kingdom

Di Simplicio M.,MRC Brain and Cognition science Unit | Di Simplicio M.,University of Oxford | Norbury R.,University of Oxford | Norbury R.,Oxford Center for Clinical Magnetic Resonance Research | And 2 more authors.
Psychological Medicine | Year: 2014

Background. Short-term antidepressant administration has been reported to decrease amygdala response to threat in healthy volunteers and depressed patients. Neuroticism (N) is a risk factor for depression but has also been associated with slow or incomplete remission with antidepressant drug treatment. Our aim was to investigate early selective serotonin reuptake inhibitor (SSRI) administration neural effects on implicit processing of fearful facial expressions in volunteers with high levels of N. Method. Highly neurotic subjects received 20mg/day citalopram versus placebo for 7 days in a double-blind, between-groups design. On the last day haemoperfusion and functional magnetic resonance imaging (fMRI) data during a gender discrimination task with fearful and happy faces were acquired. A control group of non-neurotic volunteers was also tested. Results. High-N volunteers had reduced responses to threatening facial expressions across key neural circuits compared to low-N volunteers. SSRI treatment was found to elevate resting perfusion in the right amygdala, increase bilateral amygdalae activation to positive and negative facial expressions and increase activation to fearful versus happy facial expressions in occipital, parietal, temporal and prefrontal cortical areas. Conclusions. These results suggest that 7 days of SSRI administration can increase neural markers of fear reactivity in subjects at the high end of the N dimension and may be related to early increases in anxiety and agitation seen early in treatment. Such processes may be involved in the later therapeutic effects through decreased avoidance and increased learning about social 'threat' cues. Copyright © Cambridge University Press 2013. Source

Discover hidden collaborations