Austin, TX, United States
Austin, TX, United States

Time filter

Source Type

A method for controlling drilling direction of a bore hole assembly (BHA) while laterally drilling through a formation involves accessing, by a surface steerable system, recent TVD corrected logging history data from a bore hole estimator, iteratively determining, by the surface steerable system, a formation bed dip of the formation being laterally drilled through, repeating the steps of accessing the recent TVD corrected logging history data and iteratively determining the formation bed dip of the formation responsive to additional well information, determining, by the surface steerable system, a most probable statistical match of a well bore positions to predicated well bore positions based on the accessed recent TVD corrected logging history data, the determined formation bed dip and the additional well information and providing, by the surface steerable system, geosteering feedback responsive to the determined most probable statistical match.


An apparatus associated with a drilling rig includes a surface steerable system for controlling drilling direction of a bottom hole assembly (BHA). The surface steerable system is configured to receive drilling rig parameters from the BHA. A database stores historical data related to the drilling rig. The historical data relates to previously tracked operations of the drilling rig. The surface steerable system is further configured to perform a plurality of tracking functions with respect to the drilling rig parameters. The plurality of tracking functions cause the surface steerable system to track drilling rig parameters from sensors associated with the drilling rig, access the database of the historical data relating to previously tracked operations of the drilling rig and control operating functions of the drilling rig responsive to at least one of the drilling rig parameters from the sensors associated with the drilling rig and the historical data from the database.


Patent
Motive | Date: 2017-05-10

A linear gear shift power transfer mechanism includes a gear shift unit; a power input clamp ring element having an inward-tilted power input ring surface, first teardrop-shaped recesses and first radial positioning hole; a power output clamp ring element having an inward-tilted power output ring surface, second teardrop-shaped recesses and second radial positioning hole; a first ball ring element whose first positioning ring element has a first positioning portion and bulging ring element each provided with limiting slots; a power input rotator having a third teardrop-shaped recesses and first axial positioning hole; a power output rotator having fourth teardrop-shaped recesses and second axial positioning hole; helical resilient elements having radial and axial positioning posts and received in bulging ring elements, with the radial positioning posts disposed in first and second radial positioning holes through the limiting slots, the axial positioning posts disposed in first and second axial positioning holes.


Patent
Motive | Date: 2016-10-05

An actively controlled exercise device provides a dynamic force responsive workout. The device includes: a user output arm movably attached to a base frame; an actuator attached between the user output arm and the base frame, the actuator including a motor and an output shaft connected to the user output arm; at least one position sensor attached to the actively controlled exercise device adjacent to the user output arm for detecting a position and velocity of the output arm; a load cell attached to the actively controlled exercise device adjacent to the actuator for detecting a force exerted on the user output arm; and a force controller in communication with the position sensor, the load cell, and the actuator for activating the actuator to impart a force on the user output arm during an exercise repetition.


Patent
Motive | Date: 2017-02-15

An actuation system (1) comprising a renewable source (2) for generating electric power, which is connected directly to an electric motor (3) with an onboard inverter (6), the electric motor (3) comprising a motor body (4) that is associated with at least one output shaft (5) and supports an inverter (6) that is intended to convert electric power from DC to AC and is adapted to allow the adjustment and setting of at least one operating parameter of the electric motor (3).


Patent
Motive | Date: 2017-02-09

A method for determining a total vertical depth (TVD) for a well plan involves measuring differences between a projected BHA position at a depth of a survey station and a calculated BHA position based upon a minimum curvature method at the depth of the survey station. The differences are accumulated at each survey station with respect to the BHA position. Real time TVD corrected gamma logs are generated responsive to the accumulated differences of the BHA position.


Patent
Motive and The University Of Texas System | Date: 2016-03-11

A surface steerable system coupled to a drilling rig receives BHA information from a bottom hole assembly (BHA) located in a borehole. The BHA information corresponds to a first location of the BHA with respect to a target drilling path and geological formation drift information. The surface steerable system calculates a toolface vector to create a convergence path from the first location of the BHA to the target drilling path that accounts for geological formation drift defined by the geological formation drift information such that the BHA will converge with the target drilling path by drilling in accordance with the toolface vector. The surface steerable system causes at least one control parameter to be modified in order to alter a drilling direction of the BHA based on the calculated toolface vector and transmits the at least one control parameter to the drilling rig to target the BHA in accordance with the calculated toolface vector.


Patent
Motive | Date: 2016-02-03

A system and apparatus for displaying toolface orientation data including a surface steerable system for controlling drilling direction of a bottom hole assembly (BHA). The surface steerable system configured to receive toolface orientation data from the BHA and generate display data responsive thereto. A circular chart display is generated responsive to the display data responsive to the display data from the surface steerable system, the circular chart display representing current and historical toolface orientation data. The current and historical toolface orientation data is represented as an arc indicator defined on the circular chart illustrating a range in degrees of the current and historical toolface orientations.


Patent
Motive | Date: 2016-05-04

A bicycle rear wheel quick release structure includes a rear hub, hub connector, quick release holder, quick release bolts and fixing element. Flanked by an end plate and an opening, the rear hub receives a rear wheel transmission member. The end plate has a central hole and first positioning holes surrounding the central hole which corresponds in position to the rear wheel transmission member centrally. Received in the rear hub and coupled to rear wheel transmission member, the hub connector has second positioning holes and an axial post with a fixing hole. The axial post is coaxial with the rear wheel transmission member and penetrates the central hole. Having a coupling hole, the quick release holder is mounted on the end plate and engaged with the quick release bolts inserted into the communicated first and second positioning holes. The fixing element penetrates the coupling hole and the fixing hole.


Patent
Motive | Date: 2016-11-16

A suspension mechanism includes left and right external barrels whose upper ends have left and right ports and lower ends have left and right damper ports, respectively, wherein the left and right external barrels are pivotally connected to a chassis; left and right dampers with lower ends pivotally connected to left and right wheel support units pivotally connected to the chassis, respectively, wherein outer wall surfaces at the upper portions of the left and right dampers movably abut against inner wall surfaces at lower portions of the left and right external barrels through the left and right damper ports, with left and right adjustable spaces defined inside the left and right external barrels, and the left and right adjustable spaces communicating with the left and right ports and filled with oil, respectively; and a control valve connected to the left and right ports and adapted to control oil flow.

Loading Motive collaborators
Loading Motive collaborators