Time filter

Source Type

Nobili E.,Monzino Cardiologic Center | Nobili E.,University of Milan | Salvado M.D.,Karolinska Institutet | Folkersen L.,Karolinska Institutet | And 10 more authors.
PLoS ONE | Year: 2012

Background: Cysteinyl-leukotrienes (cys-LT) are powerful spasmogenic and immune modulating lipid mediators involved in inflammatory diseases, in particular asthma. Here, we investigated whether cys-LT signaling, in the context of atherosclerotic heart disease, compromises the myocardial microcirculation and its response to hypoxic stress. To this end, we examined Apoe-/- mice fed a hypercholesterolemic diet and analysed the expression of key enzymes of the cys-LT pathway and their receptors (CysLT1/CysLT2) in normal and hypoxic myocardium as well as the potential contribution of cys-LT signaling to the acute myocardial response to hypoxia. Methods and principal findings: Myocardial biopsies from Apoe-/- mice demonstrated signs of chronic inflammation with fibrosis, increased apoptosis and expression of IL-6, as compared to biopsies from C57BL/6J control mice. In addition, we found increased leukotriene C4 synthase (LTC4S) and CysLT1 expression in the myocardium of Apoe-/- mice. Acute bouts of hypoxia further induced LTC4S expression, increased LTC4S enzyme activity and CysLT1 expression, and were associated with increased extension of hypoxic areas within the myocardium. Inhibition of cys-LT signaling by treatment with montelukast, a selective CysLT1 receptor antagonist, during acute bouts of hypoxic stress reduced myocardial hypoxic areas in Apoe-/- mice to levels equal to those observed under normoxic conditions. In human heart biopsies from 14 patients with chronic coronary artery disease mRNA expression levels of LTC4S and CysLT1 were increased in chronic ischemic compared to non-ischemic myocardium, constituting a molecular basis for increased cys-LT signaling. Conclusion: Our results suggest that CysLT1 antagonists may have protective effects on the hypoxic heart, and improve the oxygen supply to areas of myocardial ischemia, for instance during episodes of sleep apnea. © 2012 Nobili et al.

Gelosa P.,University of Milan | Ballerio R.,Monzino Cardiologic Center | Banfi C.,Monzino Cardiologic Center | Nobili E.,Monzino Cardiologic Center | And 11 more authors.
Journal of Pharmacology and Experimental Therapeutics | Year: 2010

This study investigated the efficacy of terutroban, a specific thromboxane/prostaglandin endoperoxide receptor antagonist, on stroke incidence in spontaneously hypertensive strokeprone rats (SHRSP). The effects of terutroban were compared with those of aspirin, another antiplatelet agent, and rosuvastatin, known to exert end-organ protection in SHRSP. Saltloaded male SHRSP were treated orally once a day with vehicle, terutroban (30 mg/kg/day), aspirin (60 mg/kg/day), or rosuvastatin (10 mg/kg/day). Compared with vehicle, and regardless of any effect on blood pressure or serum thromboxane B 2 levels, terutroban significantly increased survival (p < 0.001) as a consequence of a delayed brain lesion occurrence monitored by magnetic resonance imaging (p < 0.001), and a delayed increase of proteinuria (p < 0.001). Terutroban decreased cerebral mRNA transcription of interleukin-1β, transforming growth factor-β, and monocyte chemoattractant protein-1 after 6 weeks of dietary treatment. Terutroban also prevented the accumulation of urinary acute-phase proteins at high molecular weight, identified as markers of systemic inflammation, and assessed longitudinally by one-dimensional electrophoresis. Terutroban also has protective effects on the vasculature as suggested by the preservation of endothelial function and endothelial nitric-oxide synthase expression in isolated carotid arteries. These effects are similar to those obtained with rosuvastatin, and superior to those of aspirin. Terutroban increases survival in SHRSP by reducing systemic inflammation as well as preserving endothelial function. These data support clinical development of terutroban in the prevention of cerebrovascular and cardiovascular complications of atherothrombosis. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics.

Discover hidden collaborations