Montpellier, France
Montpellier, France

The University of Montpellier was a French university in Montpellier Hérault, in Languedoc-Roussillon region in south-east France. Its present-day university legacy has been renamed and is currently known as the University of Montpellier 1, Montpellier 2 University and Paul Valéry University, Montpellier III until 2015 when l'université de Montpellier was created a second time. Moreover, the prestigious and famous secondary high-school Lycée Joffre is also a direct heir from the outstanding Montpellier University system. Wikipedia.


Time filter

Source Type

Patent
Vib Vzw, Ghent University, French National Center for Scientific Research, Montpellier University, Montpellier University Hospital Center and University of Osnabrück | Date: 2016-09-28

This disclosure relates to a modified -helical bundle cytokine, with reduced activity via an -helical bundle cytokine receptor, wherein the -helical bundle cytokine is specifically delivered to target cells. Preferably, the -helical bundle cytokine is a mutant, more preferably it is a mutant interferon, with low affinity to the interferon receptor, wherein the mutant interferon is specifically delivered to target cells. The targeting is realized by fusion of the modified -helical bundle cytokine to a targeting moiety, preferably an antibody. This disclosure relates further to the use of such targeted modified -helical bundle cytokine to treat diseases. A preferred embodiment is the use of a targeted mutant interferon, to treat diseases, preferably viral diseases and tumors.


Patent
French Institute of Health, Medical Research and Montpellier University | Date: 2016-11-21

The present invention relates to a method for selecting a competent oocyte or a competent embryo by determining the expression level of specific microRNA species in a body fluid or in cumulus cells.


Patent
French Institute of Health, Medical Research, Montpellier University and University Dauvergne | Date: 2015-04-24

The present invention relates to a compound of formula (I) wherein: i is 0 or 1; j is 0 or 1; k is 0 or 1; R_(1 )and R_(2 )are in particular H, (C_(1)-C_(12))alkyl, or a group of formula C(O)R; R is a, linear or branched, alkyl radical, comprising at least 19 carbon atoms; R_(3 )is H and k=0 when j=1; or, when j=0, R_(3 )is C(O)R or -L-C(O)R; L, U and L are linkers; wherein, when j=0, at least one of the groups R_(1); R_(2 )and R_(3 )comprises a radical R.


Patent
Idenix Pharmaceuticals, University of Cagliari, French National Center for Scientific Research and Montpellier University | Date: 2016-12-14

2 and/or 3 prodrugs of 1, 2, 3 or 4-branchednucleosides, and their pharmaceutically acceptable salts and derivatives are described. These prodrugs are useful in the prevention and treatment of Flaviviridae infections, including HCV infection, and other related conditions. Compounds and compositions of the prodrugs of the present invention are described. Methods and uses are also provided that include the administration of an effective amount of the prodrugs of the present invention, or their pharmaceutically acceptable salts or derivatives. These drugs may optionally be administered in combination or alteration with further anti-viral agents to prevent or treat Flaviviridae infections and other related conditions.


Patent
French Institute of Health, Medical Research, Montpellier University, Assistance Publique Hopitaux De Paris, University Paris Est Creteil and University of Angers | Date: 2016-10-17

The present invention relates to methods and pharmaceutical compositions for cardioprotection of subjects who experienced a myocardial infarction. In particular, the present invention relates to a ligand of the sonic hedgehog signaling pathway for use in the cardioprotection of a subject who experienced a myocardial infarction.


Patent
French National Center for Scientific Research, Montpellier University and Toulouse 1 University Capitole | Date: 2015-01-22

The invention relates to a method for the in vitro diagnosis of prostate cancer in a patient, characterised in that it comprises a step of measuring the expression level of the gene of the cation-independent mannose-6-phosphate receptor (CI-M6PR) in a sample of prostate tissue of the patient, the determination of overexpression of said CI-M6PR gene indicating the presence of prostate cancer in said patient.


It comprises new systematic procedures for filtering synchronization data (raw data: tap times and sound/musical beat reference times) in order to obtain accurate and reliable measures of synchronization accuracy and variability (or consistency). The procedures detailed are used to provide reliable synchronization data that can be used to compute measures of synchronization accuracy and variability based on linear statistics or circular statistics. These procedures are particularly appropriate for analyzing synchronization performance in individuals with rhythmic disorders.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETPROACT-01-2016 | Award Amount: 7.98M | Year: 2017

A novel concept for a photo-electro-catalytic (PEC) cell able to directly convert water and CO2 into fuels and chemicals (CO2 reduction) and oxygen (water oxidation) using exclusively solar energy will be designed, built, validated, and optimized. The cell will be constructed from cheap multifunction photo-electrodes able to transform sun irradiation into an electrochemical potential difference (expected efficiency > 12%); ultra-thin layers and nanoparticles of metal or metal oxide catalysts for both half-cell reactions (expected efficiency > 90%); and stateof- the-art membrane technology for gas/liquid/products separation to match a theoretical target solar to fuels efficiency above 10%. All parts will be assembled to maximize performance in pH > 7 solution and moderate temperatures (50-80 C) as to take advantage of the high stability and favorable kinetics of constituent materials in these conditions. Achieving this goal we will improve the state-of-the-art of all components for the sake of cell integration: 1) Surface sciences: metal and metal oxide catalysts (crystals or nanostructures grown on metals or silicon) will be characterized for water oxidation and CO2 reduction through atomically resolved experiments (scanning probe microscopy) and spatially-averaged surface techniques including surface analysis before, after and in operando electrochemical reactions. Activity and performance will be correlated to composition, thickness, structure and support as to determine the optimum parameters for device integration. 2) Photoelectrodes: This unique surface knowledge will be transferred to the processing of catalytic nanostructures deposited on semiconductors through different methods to match the surface chemistry results through viable up-scaling processes. Multiple thermodynamic and kinetic techniques will be used to characterize and optimize the performance of the interfaces with spectroscopy and photo-electrochemistry tools to identify best matching between light absorbers and chemical catalysts along optimum working conditions (pH, temperature, pressure). 3) Modeling: Materials, catalysts and processes will be modeled with computational methods as a pivotal tool to understand and to bring photo-catalytic-electrodes to their theoretical limits in terms of performance. The selected optimum materials and environmental conditions as defined from these parallel studies will be integrated into a PEC cell prototype. This design will include ion exchange membranes and gas diffusion electrodes for product separation. Performance will be validated in real working conditions under sun irradiation to assess the technological and industrial relevance of our A-LEAF cell.

Loading Montpellier University collaborators
Loading Montpellier University collaborators