Monolithic Power Systems Inc.

San Jose, CA, United States

Monolithic Power Systems Inc.

San Jose, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Monolithic Power Systems Inc. | Date: 2017-01-20

A semiconductor device reducing parasitic loop inductance of system for the switching converter. The semiconductor device has an input voltage pin, a ground reference pin, a switching pin, and a semiconductor die, wherein the semiconductor die comprises a high-side power switch and a low-side power switch and a metal connection. The metal connection directly connects the high-side power switch and the first terminal of the low-side power switch, and is along and proximity to an edge of the semiconductor device to which the input voltage pin is distributed.


Patent
Monolithic Power Systems Inc. | Date: 2016-11-17

A voltage control circuit for a memory cell having a floating gate transistor and a capacitive device, comprising a first input terminal, a second input terminal, a first output terminal and a second input terminal, wherein the first input terminal is configured to receive a power supply voltage, the second input terminal is configured to receive a ground reference, and wherein based on the power supply voltage and the ground reference, the first output terminal and the second output terminal respectively provides a first voltage signal and a second voltage signal, and wherein a voltage value of the first voltage signal is twice the power supply voltage, and a maximum of a voltage difference between the first voltage signal and the second voltage signal is three times the power supply voltage.


Patent
Monolithic Power Systems Inc. | Date: 2017-03-22

A magnetic angular sensing system has a magnet magnetized radially and a magnetic angular sensor for sensing the angular position of the magnet. The magnetic angular sensor is mounted in parallel to the axis of the magnet and is non-coplanar with the magnet. The magnetic angular sensor senses an angular position of the magnet based on a detected axial magnetic field component and a tangential magnetic field component of the magnetic field vector where the sensor mounted. This invention provides a flexible sensing system.


Patent
Monolithic Power Systems Inc. | Date: 2016-11-30

A computer provides a graphical user interface for displaying a virtual representation of a voltage regulator and for accepting a user requirement for the voltage regulator. The computer automatically determines an internal calibration setting of the voltage regulator that meets the user requirement. The computer simulates operation of the voltage regulator as calibrated with the internal calibration setting. The internal calibration setting is downloaded to the voltage regulator. A calibration controller of the voltage regulator receives the internal calibration setting and outputs digital calibration bits in accordance with the internal calibration setting. The digital calibration bits works in conjunction with interface circuits to adjust circuits of a voltage regulator core to digitally calibrate the voltage regulator.


Patent
Monolithic Power Systems Inc. | Date: 2016-09-15

A magnetic angular sensing system has a magnet magnetized radially and a magnetic angular sensor for sensing the angular position of the magnet. The magnetic angular sensor is mounted in parallel to the axis of the magnet and is non-coplanar with the magnet. The magnetic angular sensor senses an angular position of the magnet based on a detected axial magnetic field component and a tangential magnetic field component of the magnetic field vector where the sensor mounted. This invention provides a flexible sensing system.


Patent
Monolithic Power Systems Inc. | Date: 2016-09-23

A control method of frequency jittering with a switching mode power supply, comprising: turning on and off a power switch of the switching mode power supply alternatively; updating a peak current signal of the switching mode power supply at a beginning of an on time of the power switch according to a length of a switching period before the beginning of the on time of the power switch, wherein the peak current signal varies as the length of the switching period changes.


An electrical circuit includes a monolithic integrated circuit (IC) switch device that includes a first pin, a second pin, and a power switch that connects the first pin to the second pin through the power switch when the electrical circuit is turned ON. The monolithic IC switch device includes an adaptive safe operating area (SOA) circuit that limits allowable current through the power switch based on temperature, such as the temperature of the power switch.


Patent
Monolithic Power Systems Inc. | Date: 2016-10-28

A boost converter having an inductor having a first terminal coupled to an input port to receive the input voltage; a high side switch coupled between the inductor and an output port; a low side switch coupled between the inductor and a ground reference; and a control circuit configured to receive a feedback signal indicative of the output voltage and a reference signal, and to provide a high side control signal and a low side control signal based on the feedback signal and the reference signal; wherein the low side switch on time period is controlled to be constant by the low side control signal.


Patent
Monolithic Power Systems Inc. | Date: 2016-10-28

A boost converter having an inductor having a first terminal coupled to an input port to receive the input voltage; a high side switch coupled between the inductor and an output port; a low side switch coupled between the inductor and a ground reference; and a control circuit configured to receive a feedback signal indicative of the output voltage and a reference signal, and to provide a high side control signal and a low side control signal based on the feedback signal and the reference signal; wherein the low side switch on time period is controlled to be constant by the low side control signal when the input voltage and the output voltage are fixed.


Patent
Monolithic Power Systems Inc. | Date: 2016-06-27

A current balance circuit for a power management device having a first current channel and a second current channel, having: a first current sense circuit configured to detect a current flowing through the first current channel, and to provide a first current sense signal indicative of the current flowing through the first current channel; wherein the current balance circuit draws current from the second current channel to the first current channel based on the first current sense signal.

Loading Monolithic Power Systems Inc. collaborators
Loading Monolithic Power Systems Inc. collaborators