Entity

Time filter

Source Type


Gradel A.,University of Gottingen | Gradel A.,Public Enterprise Sachsenforst | Hansch C.,TU Dresden | Ganbaatar B.,Mongolian Academy of science | And 3 more authors.
Dendrochronologia | Year: 2016

The mountain forest steppe and taiga in northern Mongolia have experienced a forest decline in area and quality since the end of the last century. Changes in land use, climate, fire frequency and pest occurrence are considered to be the main drivers of this vegetation shift and desertification. Because this region is the source for major rivers, is home to a unique flora and fauna and represents an important source of timber for Mongolia, the ability of different tree species to respond to these changes and regenerate is of increasing interest. Our contribution focuses on the climate-growth relationship of old and young birch trees from two valleys in the Mongolian province of Selenge Aimag.The research site Bugant, located in the Western Khentey Mountains, was the most important logging centre in Mongolia during socialist times. Today, the vegetation is dominated by succession forests of light taiga. The research site Altansumber, on the border of the Sant and Khushat soum, is dominated by light taiga and mountain forest steppe. Traditional nomads who depend on these forests for different reasons inhabit this area.Wood cores were sampled and chronologies of young and old birch trees at Bugant and Altansumber were created. Climate data were obtained from the Eroo station, which is known in the region for its long and reliable climate record. We analysed the climate-growth relationships of the chronologies from 1962 to 2009. At both sites and in both age classes, correlations with temperature were predominantly negative, particularly in April (Bugant, south- and east-facing slopes) and May (Altansumber, north-facing slopes). Precipitation of the late summer of the previous year (August/September) positively correlated with the growth of birch at Altansumber. We assume that the significant negative correlation between winter precipitation (December/January) and the growth of old birches at both sites is due to positive effects of snow cover on the survival rate of herbivorous insect populations. Our results indicate that during the early vegetation period, younger birch trees are more dependent on water availability than older ones. Negative pointer years were characterized by below-average precipitation during the current summer period and above-average spring temperatures. For the old trees, positive pointer years were characterized by above-average summer precipitation. We conclude that water availability is the most crucial factor for the growth of white birch in northern Mongolia. © 2016 Elsevier GmbH.


Tuulaikhuu B.-A.,University of Girona | Tuulaikhuu B.-A.,Mongolian University of Life science | Bonet B.,University of Girona | Guasch H.,University of Girona
Science of the Total Environment | Year: 2016

Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+ As) and biofilm with arsenic (B + As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5. ±. 7.5 μg/L for + As treatment and 34.4. ±. 1.4. μg/L for B + As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150. μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5. μg As/L. © 2015 Elsevier B.V.


de la Cruz J.F.,University of the Philippines at Los Banos | Vergara E.J.S.,Hankyong National University | Cho Y.,Hankyong National University | Hong H.O.,Konkuk University | And 2 more authors.
Asian Pacific Journal of Cancer Prevention | Year: 2016

Glehnia littoralis (GL) is widely used as an oriental medicine for cough, fever, stroke and other disease conditions. However, the anti-cancer properties of GL on MCF-7 human breast cancer cells have not been investigated. In order to elucidate anti-cancer properties and underlying cell death mechanisms, MCF-7cells (5 × 104/well) were treated with Glehnia littoralis root extract at 0-400 ug/ml. A hot water extract of GL root inhibited the proliferation of MCF-7 cells in a dose-dependent manner. Analysis of the cell cycle after treatment of MCF-7 cells with increasing concentrations of GL root extract for 24 hours showed significant cell cycle arrest in the G1 phase. RT-PCR and Western blot analysis both revealed that GL root extract significantly increased the expression of p21 and p27 with an accompanyingdecrease in both CDK4 and cyclin D1. Our reuslts indicated that GL root extract arrested the proliferation of MCF-7 cells in G1 phase through inhibition of CDK4 and cyclin D1 via increased induction of p21 and p27. In summary, the current study showed that GL could serve as a potential source of chemotherapeutic or chemopreventative agents against human breast cancer.


Dulamsuren C.,University of Gottingen | Klinge M.,University of Gottingen | Degener J.,University of Gottingen | Khishigjargal M.,University of Gottingen | And 12 more authors.
Global Change Biology | Year: 2016

The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha-1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha-1) and total belowground carbon density (149 Mg C ha-1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha-1, compared with 215 Mg C ha-1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha-1. Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2016 John Wiley & Sons Ltd.

Discover hidden collaborations