Entity

Time filter

Source Type

Not Found, United Kingdom

Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.55M | Year: 2015

MASSTRPLAN will train the next generation of interdisciplinary research leaders in advanced molecular analytical techniques to detect oxidized phospholipids & proteins in biological & clinical samples, evaluate their biochemical roles in inflammation, and translate these findings to develop new diagnostic tools. Chronic inflammatory diseases such as diabetes, cardiovascular disease (CVD) & cancer are major causes of mortality and cost the EU economy dearly in healthcare and lost working time; CVD alone is estimated to be responsible for 47% of deaths and to cost the EU 196 billion a year. Scientists able to develop advanced analytical tools for detecting oxidative biomolecule modifications and assessing their contribution to cell dysfunction & disease are urgently needed. The objectives of MASSTRPLAN are to 1) train early stage researchers (ESRs) in advanced and novel chromatography, mass spectrometry, and complementary techniques including microscopy and bioinformatics to detect challenging heterogeneous biomolecule modifications and determine their functional effects; 2) give ESRs a broad perspective on relevance & mechanisms of oxidative modifications in pathophysiology and biotechnology; 3) enable ESRs trained in technology development to engage effectively with the clinical sector; and 4) train ESRs in translational and development skills to produce new protocols, materials and commercializable diagnostic tools. The ETN will achieve this by bringing together 10 beneficiaries and 15 partners from academic, industrial and healthcare organizations working in analytical, bioinformatic, biological, clinical & biotech fields to provide multidisciplinary, cross-sector training. Extensive mobility, industrial secondments and network-wide training will yield a cohort of analytical scientists with the unique theoretical, technological, and entrepreneurial skill set to yield new understanding of oxidative inflammatory disorders, leading to better tools and therapies.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 11.06M | Year: 2013

The emergence and re-emergence of infectious diseases is one of the greatest threats to human health. By their very nature, outbreaks of infectious disease can spread rapidly, causing enormous losses to health and livelihood. For example, an estimated 35-million people are HIV-infected, antibiotic resistant pathogens such as MRSA are a major global public health problem and pandemic influenza is rated as the greatest national risk on the UK government risk register (Cabinet Office National Risk Register for Civil Emergencies 2012 Edition). Early diagnosis plays a vital role in the treatment, care and prevention of infectious diseases. However worldwide, many infections remain undiagnosed and untreated or are diagnosed at the late stage due to poor diagnostic tools, resulting in on-going transmission of serious infections or delay in the identification of emerging threats, leading to major human and economic consequences for millions of people. Our vision is to establish an EPSRC Interdisciplinary Research Centre to create a new generation of early-warning sensing systems to diagnose, monitor & prevent the spread of infectious diseases. This large scale collaboration will bring together scientists, engineers and computer scientists from University College London, Imperial College, London School of Hygiene and Tropical Medicine and the University of Newcastle together with NHS stakeholders, the Health Protection Agency and industry partners. Working across and beyond traditional research boundaries, the IRC will pioneer innovative nano-enabled mobile diagnostic tests which can be used in GP surgeries, community settings and developing countries, linked to smart digital-surveillance systems which search for information on the web to detect early indicators of diseases. The tremendous expansion in mobile phone technology with an estimated 6 billion users worldwide, provides new opportunities for point-of-care diagnostics with inbuilt capacity to securely transmit results to public healthcare systems. The challenge is to create robust multimarker sensor platforms that can diagnose early infections with high sensitivity and specificity. Our strategy will seamlessly integrate the scientific excellence underpinning recent breakthroughs by our team in diverse areas of biomarker discovery, capture coatings, nanoparticles, nanopatterning, sensor systems, wireless connectivity, data mining and health economic analysis of diagnostics. Moreover we will explore innovative new strategies to search for early indicators of infection (herein we coin the phrase e-markers) by searching through millions of web-accessible information sources including Google, Facebook and Twitter to identify outbreaks even from people who do not attend clinics or from geographical regions that are invisible to traditional public health efforts. By providing doctors, community workers and public health organisations with real-time, geographically-linked information about emerging infections which will be visualised on a dashboard display, we will support more rapid, stratified, integrated evidence-based interventions, benefitting individuals and populations. Our disruptive early warning sensing capabilities will bring major human and economic benefits to the NHS and global healthcare systems. The ultimate beneficiaries will be patients since early diagnosis will empower them to gain faster access to better treatments, helping to reduce suffering and risk of death. Society will benefit by preventing the onwards spread of infection by people who are unaware of their infection and preserve the effectiveness of precious antimicrobial medicines for future generations. The NHS and healthcare systems will benefit by simplifying patient pathways allowing tests and results to be given in a single visit and so provide a more cost-effective solution of community based care. Our technologies will also provide new commercial opportunities for British industry.

Discover hidden collaborations