Institute for Molecular Science

Science, United States

Institute for Molecular Science

Science, United States

Time filter

Source Type

News Article | April 28, 2017
Site: phys.org

Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal. Furthermore, they succeeded in the Hall effect measurement of the crystal -- the world's first case. The research has been published in the Advanced Materials. Credit: Institute for Molecular Science Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal. Furthermore, they succeeded in the Hall effect measurement of the crystal—the world's first case. The research has been published in the Advanced Materials. Controlling "holes" and "electrons" responsible for electric conduction of p-type and n-type semiconductors by doping—adding a trace amount of impurity—had been the central technology in the 20th century's inorganic single crystal electronics represented by silicon chips, solar cells, and light emitting diodes. The number of carriers (holes and electrons) created by doping and their moving speed (mobility) can be freely evaluated by "Hall effect measurement" using a magnetic field. However, in the field of organic electronics emerging in the 21th century, no one has ever attempted to dope impurities into an organic single crystal itself nor measure its Hall effect. "We have combined the rubrene organic single crystal growth technique with our original ultra-slow deposition technique of one billionth of a nanometer (10- 9 nm) per second, which includes a rotating shutter having aperture." explains Chika Ohashi, a PhD student, SOKENDAI in the group. "For the first time, we have succeeded in producing the 1 ppm doped organic single crystal and have detected its Hall effect signal." The doping efficiency of the organic single crystal was 24%, which is a much higher performance compared to 1% for the vacuum deposited amorphous film of the same material. Lab head Prof. Masahiro Hiramoto sees the present results have the meaning of dawn of organic single crystal electronics similar to the silicon single crystal electronics. In future, devices such as high performance organic single crystal solar cells may be developed. Explore further: Gold foil discovery could lead to wearable technology More information: Chika Ohashi et al, Hall Effect in Bulk-Doped Organic Single Crystals, Advanced Materials (2017). DOI: 10.1002/adma.201605619


News Article | April 28, 2017
Site: www.eurekalert.org

Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal. Furthermore, they succeeded in the Hall effect measurement of the crystal -- the world's first case. The research has been published in the Advanced Materials. Controlling "holes" and "electrons" responsible for electric conduction of p-type and n-type semiconductors by doping -- adding a trace amount of impurity -- had been the central technology in the 20th century's inorganic single crystal electronics represented by silicon chips, solar cells, and light emitting diodes. The number of carriers (holes and electrons) created by doping and their moving speed (mobility) can be freely evaluated by "Hall effect measurement" using a magnetic field. However, in the field of organic electronics emerging in the 21th century, no one has ever attempted to dope impurities into an organic single crystal itself nor measure its Hall effect. "We have combined the rubrene organic single crystal growth technique with our original ultra-slow deposition technique of one billionth of a nanometer (10- 9 nm) per second, which includes a rotating shutter having aperture." explains Chika Ohashi, a PhD student, SOKENDAI in the group. "For the first time, we have succeeded in producing the 1 ppm doped organic single crystal and have detected its Hall effect signal." The doping efficiency of the organic single crystal was 24%, which is a much higher performance compared to 1% for the vacuum deposited amorphous film of the same material. Lab head Prof. Masahiro Hiramoto sees the present results have the meaning of dawn of organic single crystal electronics similar to the silicon single crystal electronics. In future, devices such as high performance organic single crystal solar cells may be developed.


News Article | November 16, 2016
Site: www.sciencedaily.com

Kenji Ohmori (Institute for Molecular Science, National Institutes of Natural Sciences, Japan) has collaborated with Matthias Weidemüller (University of Heidelberg), Guido Pupillo (University of Strasbourg), Claudiu Genes (University of Innsbruck) and their coworkers to develop the world's fastest simulator that can simulate quantum mechanical dynamics of a large number of particles interacting with each other within one billionths of a second. The dynamics of many electrons interacting with each other governs a variety of important physical and chemical phenomena such as superconductivity, magnetism, and chemical reactions. An ensemble of many particles thus interacting with each other is referred to as a "strongly correlated system." Understanding the properties of strongly correlated systems is thus one of the central goals of modern sciences. It is extremely difficult, however, to predict theoretically the properties of a strongly correlated system even if one uses the post-K supercomputer, which is one of the world's fastest supercomputers planned to be completed by the year 2020 in a national project of Japan. For example, the post-K cannot exactly calculate even the energy, which is the most basic property of matter, when the number of particles in the system is more than 30. Instead of calculating with a classical computer such as the post-K, an alternative concept has been proposed and referred to as a "quantum simulator," in which quantum mechanical particles such as atoms are assembled into an artificial strongly correlated system whose properties are known and controllable. The latter is then used to simulate and understand the properties of a different strongly correlated system, whose properties are not known. Huge investment to the development of quantum simulators has therefore been started recently in national projects of various countries including US, EU, and China. The team has developed a completely new quantum simulator that can simulate the dynamics of a strongly correlated system of more than 40 atoms within one billionths of a second. This has been realized by introducing a novel approach in which an ultrashort laser pulse whose pulse-width is only 100 billionths of a second is employed to control a high-density ensemble of atoms cooled down to temperatures close to absolute zero. Furthermore they have succeeded in simulating the motion of electrons of this strongly correlated system that is modulated by changing the strength of interactions among many atoms in the ensemble. This "ultrafast quantum simulator" is expected to serve as a basic tool to investigate the origin of physical properties of matter including magnetism and, possibly, superconductivity.


News Article | November 16, 2016
Site: www.eurekalert.org

Okazaki, Japan - Kenji Ohmori (Institute for Molecular Science, National Institutes of Natural Sciences, Japan) has collaborated with Matthias Weidemüller (University of Heidelberg), Guido Pupillo (University of Strasbourg), Claudiu Genes (University of Innsbruck) and their coworkers to develop the world's fastest simulator that can simulate quantum mechanical dynamics of a large number of particles interacting with each other within one billionths of a second. The dynamics of many electrons interacting with each other governs a variety of important physical and chemical phenomena such as superconductivity, magnetism, and chemical reactions. An ensemble of many particles thus interacting with each other is referred to as a "strongly correlated system". Understanding the properties of strongly correlated systems is thus one of the central goals of modern sciences. It is extremely difficult, however, to predict theoretically the properties of a strongly correlated system even if one uses the post-K supercomputer, which is one of the world's fastest supercomputers planned to be completed by the year 2020 in a national project of Japan. For example, the post-K cannot exactly calculate even the energy, which is the most basic property of matter, when the number of particles in the system is more than 30. Instead of calculating with a classical computer such as the post-K, an alternative concept has been proposed and referred to as a "quantum simulator", in which quantum mechanical particles such as atoms are assembled into an artificial strongly correlated system whose properties are known and controllable. The latter is then used to simulate and understand the properties of a different strongly correlated system, whose properties are not known. Huge investment to the development of quantum simulators has therefore been started recently in national projects of various countries including US, EU, and China. The team has developed a completely new quantum simulator that can simulate the dynamics of a strongly correlated system of more than 40 atoms within one billionths of a second. This has been realized by introducing a novel approach in which an ultrashort laser pulse whose pulse-width is only 100 billionths of a second is employed to control a high-density ensemble of atoms cooled down to temperatures close to absolute zero. Furthermore they have succeeded in simulating the motion of electrons of this strongly correlated system that is modulated by changing the strength of interactions among many atoms in the ensemble. This "ultrafast quantum simulator" is expected to serve as a basic tool to investigate the origin of physical properties of matter including magnetism and, possibly, superconductivity. This result will be published in Nature Communications, an online scientific journal of UK, on 16th November 2016. Journal: Nature Communications Title: Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas Authors: Nobuyuki Takei, Christian Sommer, Claudiu Genes, Guido Pupillo, Haruka Goto, Kuniaki Koyasu, Hisashi Chiba, Matthias Weidemüller, and Kenji Ohmori Date: 2016/11/16 DOI: 10.1038/NCOMMS13449 Kenji Ohmori Professor and Chairman, Department of Photo-Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan Tel?+81-564-55-7361?Fax?+81-564-54-2254 E-mail: ohmori@ims.ac.jp URL: https:/


News Article | November 16, 2016
Site: www.nanotech-now.com

Abstract: Kenji Ohmori (Institute for Molecular Science, National Institutes of Natural Sciences, Japan) has collaborated with Matthias Weidemüller (University of Heidelberg), Guido Pupillo (University of Strasbourg), Claudiu Genes (University of Innsbruck) and their coworkers to develop the world's fastest simulator that can simulate quantum mechanical dynamics of a large number of particles interacting with each other within one billionths of a second. The dynamics of many electrons interacting with each other governs a variety of important physical and chemical phenomena such as superconductivity, magnetism, and chemical reactions. An ensemble of many particles thus interacting with each other is referred to as a "strongly correlated system". Understanding the properties of strongly correlated systems is thus one of the central goals of modern sciences. It is extremely difficult, however, to predict theoretically the properties of a strongly correlated system even if one uses the post-K supercomputer, which is one of the world's fastest supercomputers planned to be completed by the year 2020 in a national project of Japan. For example, the post-K cannot exactly calculate even the energy, which is the most basic property of matter, when the number of particles in the system is more than 30. Instead of calculating with a classical computer such as the post-K, an alternative concept has been proposed and referred to as a "quantum simulator", in which quantum mechanical particles such as atoms are assembled into an artificial strongly correlated system whose properties are known and controllable. The latter is then used to simulate and understand the properties of a different strongly correlated system, whose properties are not known. Huge investment to the development of quantum simulators has therefore been started recently in national projects of various countries including US, EU, and China. The team has developed a completely new quantum simulator that can simulate the dynamics of a strongly correlated system of more than 40 atoms within one billionths of a second. This has been realized by introducing a novel approach in which an ultrashort laser pulse whose pulse-width is only 100 billionths of a second is employed to control a high-density ensemble of atoms cooled down to temperatures close to absolute zero. Furthermore they have succeeded in simulating the motion of electrons of this strongly correlated system that is modulated by changing the strength of interactions among many atoms in the ensemble. This "ultrafast quantum simulator" is expected to serve as a basic tool to investigate the origin of physical properties of matter including magnetism and, possibly, superconductivity. This result will be published in Nature Communications, an online scientific journal of UK, on 16th November 2016. ### (Information of the paper) Journal: Nature Communications Title: Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas Authors: Nobuyuki Takei, Christian Sommer, Claudiu Genes, Guido Pupillo, Haruka Goto, Kuniaki Koyasu, Hisashi Chiba, Matthias Weidemüller, and Kenji Ohmori Date: 2016/11/16 DOI: 10.1038/NCOMMS13449 For more information, please click Contacts: Kenji Ohmori Professor and Chairman, Department of Photo-Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan Tel?+81-564-55-7361?Fax?+81-564-54-2254 URL: https://groups.ims.ac.jp/organization/ohmori_g/index-e.html (Press contact) Public Relations, Institute for Molecular Science, Natural Institutes of Natural Sciences TEL/FAX?+81-564-55-7262 If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


News Article | March 18, 2016
Site: www.greencarcongress.com

« DOE announces $3M for 2nd round of HPC4Mfg for industry access to high performance computing | Main | IEEE publishes three updated standards to support connected vehicle development » Scientists at Tokyo Institute of Technology, in collaboration with colleagues in Japan, have demonstrated the first electrochemical reaction based on hydride ions in an oxide-based solid-state cell for potential next-generation batteries. A paper on their work is published in the journal Science. Ionic transport has been studied extensively over the years for energy devices such as fuel cells and batteries using Li+, H+, Ag+, Cu+, F–, and O2– as ionic charge carriers. The conduction of hydride ions, H–, is also attractive, the team notes in their paper. In contrast to proton conduction that takes place widely in oxides and other systems, pure H– conduction has been verified only for a few hydrides of alkaline earth metals such as BaH . Unfortunately, utilization of the hydrides is difficult because of their structural inflexibility, which makes control of the lattice structure to create smooth transport pathways and control of the conducting hydride ion content difficult. Using an oxyhydride solid state cell, the researchers have now demonstrated pure H- conduction in an oxide for the first time. Metal hydrides tend to have an inflexible lattice, which makes H– transport difficult, so the researchers turned to oxyhydrides where oxygen and hydrogen share the same lattice sites. Another challenge is the high electron-donating properties of H-, which means that the electrons will dissociate from the H- to produce protons and electrons, giving rise to electron rather than hydride-ion transport. As a result the team sought a system containing cations that were more electron-donating than the H-. Genki Kobayashi and Ryoji Kanno from Tokyo Tech collaborated with colleagues from the Institute for Molecular Science, Japan Science and Technology Agency, Tokyo Institute of Technology, Kyoto University and High Energy Accelerator Research Organization (KEK) in Japan. They examined how the structure of their oxyhydride compounds changed with composition and synthesis conditions. They also studied characteristics of the electronic structure that suggested an ionic Li-H bond in the compound—the existence of H– in the oxides. They then used La LiHO in an orthorhombic structural phase (o-La LiHO ) as an electrolyte in a cell with titanium anode and titanium hydride cathodes. Phase changes at the electrodes by the discharge were consistent with a Ti-H phase diagram suggesting hydride-ion transport. In a Perspective on the work by Kobayashi et al., published in the same issue of Science, Shu Yamaguchi of The University of Tokyo observed that: Kobayashi et al. report a material with pure H− conductivity (and yet an electronic insulator) in an oxyhydride system, which has been a “last frontier” in solid state ionics. … The result … is just the beginning of a new materials science of H− conductivity in oxyhydride systems that will require further elaboration of the underlying mechanisms, as well as potential applications of the extremely reducing H− ion in chemical synthesis. A drawback of the current material is its chemical reactivity in oxidizing atmospheres, but this disadvantage may be overcome by various techniques, like surface protection coatings. These explorations of H− conductors now leave the question of what will be the next last frontier for solid state ionics. This research was supported by Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), and Grant-in-Aid for Scientific Research on Innovative Areas from the Japan Society for the Promotion of Science (JSPS).


Yoon G.,Korea University | Kab Kim Y.,Korea University | Eom K.,Yonsei University | Eom K.,Institute for Molecular science | Na S.,Korea University
Applied Physics Letters | Year: 2013

It has recently been reported that the mechanical behavior of prion nanofibrils may play a critical role in expression of neurodegenerative diseases. In this work, we have studied the mechanical behavior of HET-s prion nanofibrils using an elastic network model. We have shown that the mechanical properties of prion nanofibrils formed as left-handed β-helices are different from those of non-prion nanofibrils formed as right-handed β-helices. In particular, the bending behavior of prion nanofibrils depends on the length of the nanofibril and that the bending rigidity of the prion nanofibril is larger than that of the non-prion nanofibril. © 2013 American Institute of Physics.


Dai M.D.,Konkuk University | Kim C.-W.,Konkuk University | Kim C.-W.,Institute for Molecular science | Eom K.,Yonsei University | Eom K.,Institute for Molecular science
Nanoscale Research Letters | Year: 2012

Graphene has received significant attention due to its excellent mechanical properties, which has resulted in the emergence of graphene-based nano-electro-mechanical system such as nanoresonators. The nonlinear vibration of a graphene resonator and its application to mass sensing (based on nonlinear oscillation) have been poorly studied, although a graphene resonator is able to easily reach the nonlinear vibration. In this work, we have studied the nonlinear vibration of a graphene resonator driven by a geometric nonlinear effect due to an edge-clamped boundary condition using a continuum elastic model such as a plate model. We have shown that an in-plane tension can play a role in modulating the nonlinearity of a resonance for a graphene. It has been found that the detection sensitivity of a graphene resonator can be improved by using nonlinear vibration induced by an actuation force-driven geometric nonlinear effect. It is also shown that an in-plane tension can control the detection sensitivity of a graphene resonator that operates both harmonic and nonlinear oscillation regimes. Our study suggests the design principles of a graphene resonator as a mass sensor for developing a novel detection scheme using graphene-based nonlinear oscillators. © 2012 Dai et al.


Ionic transport has been studied extensively over the years for energy devices such as fuel cells and batteries using Li+, H+, Ag+, Cu+, F–, and O2–. Yet as Genki Kobayashi and Ryoji Kanno point out in a recent report, hydride ions (H-) may be particularly useful for high-energy-density storage devices. Using an oxyhydride solid state cell they have now demonstrated pure H- conduction in an oxide for the first time. Metal hydrides tend to have an inflexible lattice, which makes H– transport difficult, so the researchers turned to oxyhydrides where oxygen and hydrogen share the same lattice sites. Another challenge is the high electron-donating properties of H-, which means that the electrons will dissociate from the H- to produce protons and electrons, giving rise to electron rather than hydride-ion transport. As a result the team sought a system containing cations that were more electron-donating than the H-. Kobayashi and Kanno collaborated with colleagues from the Institute for Molecular Science, Japan Science and Technology Agency, Tokyo Institute of Technology, Kyoto University and High Energy Accelerator Research Organization (KEK) in Japan. They examined how the structure of their oxyhydride compounds changed with composition and synthesis conditions. They also studied characteristics of the electronic structure that suggested an ionic Li-H bond in the compound, namely the existence of H– in the oxides. They then used La LiHO in an orthorhombic structural phase (o- La LiHO ) as an electrolyte in a cell with titanium anode and titanium hydride cathodes. Phase changes at the electrodes by the discharge were consistent with a Ti-H phase diagram suggesting hydride-ion transport. They conclude: "The present success in the construction of an all-solid-state electrochemical cell exhibiting H– diffusion confirms not only the capability of the oxyhydride to act as an H– solid electrolyte but also the possibility of developing electrochemical solid devices based on H– conduction." Batteries and fuel cells are electrochemical devices. In lithium ion batteries, for example, lithium ions move from a positive to a negative electrode during use, and back again during charging. They are now used ubiquitously for energy storage in mobile devices but improvements to the energy density, performance and environmental sustainability of these batteries is still sought to extend their use to other devices, such as cars. The ions move between electrodes through an electrolyte. Solid-state electrolytes have safety and stability advantages over liquids as they are less prone to leak and short circuit. In other types of electrochemical device different types of ion move back and forth, such as positive hydrogen ions in fuel cells. The charge and size of the ions affects its transport. Ions are described by the number of additional (negative ions) or absent (positive ions) electrons in the outside or 'valence' electronic orbital. Oxygen readily accepts electrons to form doubly negative ions (O2-). As a result when an ion is oxidised it loses electrons, increasing the positivity of its oxidation state. When an ion is reduced, it accepts electrons, reducing the positivity of its electron valence state. In batteries atoms can be oxidised to form positive ions that are attracted to the negative electrode where they are reduced or vice versa. These reduction and oxidation reactions are described as redox reactions. Although hydride-ion conduction has not been used in batteries, there are potential advantages for using these ions. They are similar in size to oxide and fluoride ions and have strong reducing properties. The standard redox potential of H-/H is -2.3 V - close to Mg/Mg2+ (-2.4 V) which has already attracted interest for batteries. Hydride ion conductors may therefore be applied in energy storage or conversion devices with high energy densities. To overcome some of the challenges inhibiting hydride-ion conduction—hydride-ion diffusion in oxide crystal lattices and the high tendency for hydride-ion dissociation to electrons and protons—the researchers studied oxyhydrides that have structures similar to K NiF . These included La LiHO (x = y = 0), Sr LiH O (x = 0, y = 2), La SrxLiH O (0 ≤ x ≤ 1, y = 0), and La Sr LiH O (0 ≤ x ≤ 1, y = 1). They found that La LiHO exists in two chemical phases—orthorhombic (o) and tetragonal (t) depending on the ratio of the starting chemicals and synthesis conditions. Studies of the conductivity of the compounds showed that the compound compositions that led to more vacancies were more conductive, indicating a relationship between vacancies and ionic diffusion. They also showed that the conductivity could be increased by increasing the number of vacancies. Explore further: Beyond the lithium ion—a significant step toward a better performing battery More information: G. Kobayashi et al. Pure H- conduction in oxyhydrides, Science (2016). DOI: 10.1126/science.aac9185


News Article | March 18, 2016
Site: www.rdmag.com

Scientists at Tokyo Institute of Technology in collaboration with colleagues in Japan demonstrate the first electrochemical reaction based on hydride ions in an oxide-based solid-state cell for potential next-generation batteries. Ionic transport has been studied extensively over the years for energy devices such as fuel cells and batteries using Li+, H+, Ag+, Cu+, F–, and O2–. Yet as Genki Kobayashi and Ryoji Kanno point out in a recent report, hydride ions (H-) may be particularly useful for high-energy-density storage devices. Using an oxyhydride solid state cell they have now demonstrated pure H- conduction in an oxide for the first time. Metal hydrides tend to have an inflexible lattice, which makes H– transport difficult, so the researchers turned to oxyhydrides where oxygen and hydrogen share the same lattice sites. Another challenge is the high electron-donating properties of H-, which means that the electrons will dissociate from the H- to produce protons and electrons, giving rise to electron rather than hydride-ion transport. As a result the team sought a system containing cations that were more electron-donating than the H-. Kobayashi and Kanno collaborated with colleagues from the Institute for Molecular Science, Japan Science and Technology Agency, Tokyo Institute of Technology, Kyoto University and High Energy Accelerator Research Organization (KEK) in Japan. They examined how the structure of their oxyhydride compounds changed with composition and synthesis conditions. They also studied characteristics of the electronic structure that suggested an ionic Li-H bond in the compound, namely the existence of H– in theThey then used La2LiHO3 in an orthorhombic structural phase (o- La2LiHO3) as an electrolyte in a cell with titanium anode and titanium hydride cathodes. Phase changes at the electrodes by the discharge were consistent with a Ti-H phase diagram suggesting hydride-ion transport. They conclude: "The present success in the construction of an all-solid-state electrochemical cell exhibiting H– diffusion confirms not only the capability of the oxyhydride to act as an H– solid electrolyte but also the possibility of developing electrochemical solid devices based on H– conduction." Batteries and fuel cells are electrochemical devices. In lithium ion batteries, for example, lithium ions move from a positive to a negative electrode during use, and back again during charging. They are now used ubiquitously for energy storage in mobile devices but improvements to the energy density, performance and environmental sustainability of these batteries is still sought to extend their use to other devices, such as cars. The ions move between electrodes through an electrolyte. Solid-state electrolytes have safety and stability advantages over liquids as they are less prone to leak and short circuit. In other types of electrochemical device different types of ion move back and forth, such as positive hydrogen ions in fuel cells. The charge and size of the ions affects its transport. Ions are described by the number of additional (negative ions) or absent (positive ions) electrons in the outside or 'valence' electronic orbital. Oxygen readily accepts electrons to form doubly negative ions (O2-). As a result when an ion is oxidised it loses electrons, increasing the positivity of its oxidation state. When an ion is reduced, it accepts electrons, reducing the positivity of its electron valence state. In batteries atoms can be oxidised to form positive ions that are attracted to the negative electrode where they are reduced or vice versa. These reduction and oxidation reactions are described as redox reactions. Although hydride-ion conduction has not been used in batteries, there are potential advantages for using these ions. They are similar in size to oxide and fluoride ions and have strong reducing properties. The standard redox potential of H-/H2 is -2.3 V - close to Mg/Mg2+ (-2.4 V) which has already attracted interest for batteries. Hydride ion conductors may therefore be applied in energy storage or conversion devices with high energy densities. To overcome some of the challenges inhibiting hydride-ion conduction—hydride-ion diffusion in oxide crystal lattices and the high tendency for hydride-ion dissociation to electrons and protons—the researchers studied oxyhydrides that have structures similar to K2NiF4. These included La2LiHO3 (x = y = 0), Sr2LiH3O (x = 0, y = 2), La2-xSrxLiH1-xO3 (0 ≤ x ≤ 1, y = 0), and La1-xSr1+xLiH2-xO2 (0 ≤ x ≤ 1, y = 1). They found that La2LiHO3 exists in two chemical phases—orthorhombic (o) and tetragonal (t) depending on the ratio of the starting chemicals and synthesis conditions. Studies of the conductivity of the compounds showed that the compound compositions that led to more vacancies were more conductive, indicating a relationship between vacancies and ionic diffusion. They also showed that the conductivity could be increased by increasing the number of vacancies.

Loading Institute for Molecular Science collaborators
Loading Institute for Molecular Science collaborators