Entity

Time filter

Source Type


Hand M.L.,Australian Department of Primary Industries and Fisheries | Hand M.L.,La Trobe University | Cogan N.O.,Australian Department of Primary Industries and Fisheries | Cogan N.O.,Molecular Plant Breeding and Dairy Futures Cooperative Research Centres | And 4 more authors.
BMC Evolutionary Biology | Year: 2010

Background. The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. Results. Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. Conclusions. This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers. © 2010 Hand et al; licensee BioMed Central Ltd. Source


Pearson A.,Australian Department of Primary Industries and Fisheries | Pearson A.,Molecular Plant Breeding and Dairy Futures Cooperative Research Centres | Pearson A.,La Trobe University | Cogan N.O.I.,Australian Department of Primary Industries and Fisheries | And 19 more authors.
Theoretical and Applied Genetics | Year: 2011

Perennial ryegrass is a globally cultivated obligate outbreeding diploid species (2n = 2x = 14) which is subjected to periods of waterlogging stress due to flood irrigation during winter and the lead-up to summer. Reduction of oxygen supply to root systems due to waterlogging produces consequent deleterious effects on plant performance. Framework genetic maps for a large-scale genetic mapping family [F1(NAx × AU6)] were constructed containing 91 simple sequence repeat and 24 single nucleotide polymorphism genetic markers. Genetic trait dissection using both control and waterlogging treatments was performed in the glasshouse, a total of 143 maximally recombinant genotypes being selected from the overall sib-ship and replicated threefold in the trial. Analysis was performed for nine quantitative morphological traits measured 8 weeks after stress treatments were applied. A total of 37 quantitative trait loci (QTLs) were identified; 19 on the NAx parental genetic map, and 18 on the AU6 parental genetic map. Regions of particular interest were identified on linkage groups (LGs) 4 and 3 of the respective maps, which have been targeted for further analysis by selection of critical recombinants. This first study of genetic control of waterlogging tolerance in ryegrasses has important implications for breeding improvement of abiotic stress adaptation. © 2010 Springer-Verlag. Source

Discover hidden collaborations