Molecular Neurobiology Group

Berlin, Germany

Molecular Neurobiology Group

Berlin, Germany
SEARCH FILTERS
Time filter
Source Type

Frahm S.,Molecular Neurobiology Group | Slimak M.,Molecular Neurobiology Group | Ferrarese L.,Molecular Neurobiology Group | Santos-Torres J.,Molecular Neurobiology Group | And 9 more authors.
Neuron | Year: 2011

Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the α3β4α5 nicotinic acetylcholine receptor (nAChR). Here we show that the β4 subunit is rate limiting for receptor activity, and that current increase by β4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in α5). We identify a β4-specific residue (S435), mapping to the intracellular vestibule of the α3β4α5 receptor in close proximity to α5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the α5 D398N variant in the medial habenula (MHb). Thus, this study both provides insights into α3β4α5 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes. © 2011 Elsevier Inc.


Ibanez-Tallon I.,Molecular Neurobiology Group | Nitabach M.N.,Yale University
Current Opinion in Neurobiology | Year: 2012

Tethering genetically encoded peptide toxins or ligands close to their point of activity at the cell plasma membrane provides a new approach to the study of cell networks and neuronal circuits, as it allows selective targeting of specific cell populations, enhances the working concentration of the ligand or blocker peptide, and permits the engineering of a large variety of t-peptides (e.g., including use of fluorescent markers, viral vectors and point mutation variants). This review describes the development of tethered toxins (t-toxins) and peptides derived from the identification of the cell surface nicotinic acetylcholine receptor (nAChR) modulator lynx1, the existence of related endogenous cell surface modulators of nAChR and AMPA receptors, and the application of the t-toxin and t-neuropeptide technology to the dissection of neuronal circuits in metazoans. © 2011 Elsevier Ltd.


Santos-Torres J.,Molecular Neurobiology Group | Slimak M.A.,Molecular Neurobiology Group | Auer S.,Molecular Neurobiology Group | Ibanez-Tallon I.,Molecular Neurobiology Group
Journal of Physiology | Year: 2011

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na +-H + exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. © 2011 The Authors. Journal compilation © 2011 The Physiological Society.


Sturzebecher A.S.,Molecular Neurobiology group | Hu J.,Max Delbrück Center for Molecular Medicine | Smith E.S.J.,Max Delbrück Center for Molecular Medicine | Frahm S.,Molecular Neurobiology group | And 5 more authors.
Journal of Physiology | Year: 2010

Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 ± 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour. © 2010 The Authors. Journal compilation © 2010 The Physiological Society.


PubMed | Molecular Neurobiology Group
Type: Journal Article | Journal: Current opinion in neurobiology | Year: 2012

Tethering genetically encoded peptide toxins or ligands close to their point of activity at the cell plasma membrane provides a new approach to the study of cell networks and neuronal circuits, as it allows selective targeting of specific cell populations, enhances the working concentration of the ligand or blocker peptide, and permits the engineering of a large variety of t-peptides (e.g., including use of fluorescent markers, viral vectors and point mutation variants). This review describes the development of tethered toxins (t-toxins) and peptides derived from the identification of the cell surface nicotinic acetylcholine receptor (nAChR) modulator lynx1, the existence of related endogenous cell surface modulators of nAChR and AMPA receptors, and the application of the t-toxin and t-neuropeptide technology to the dissection of neuronal circuits in metazoans.


PubMed | Molecular Neurobiology Group
Type: Journal Article | Journal: The Journal of physiology | Year: 2011

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited 34-, 7- and 4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.


PubMed | Molecular Neurobiology Group
Type: Journal Article | Journal: Neuron | Year: 2011

Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the 345 nicotinic acetylcholine receptor (nAChR). Here we show that the 4 subunit is rate limiting for receptor activity, and that current increase by 4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in 5). We identify a 4-specific residue (S435), mapping to the intracellular vestibule of the 345 receptor in close proximity to 5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the 5 D398N variant in themedial habenula (MHb). Thus, this study both provides insights into 345 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes.

Loading Molecular Neurobiology Group collaborators
Loading Molecular Neurobiology Group collaborators