Time filter

Source Type

Degl'Innocenti D.,Molecular Mechasnisms Unit | Romeo P.,Molecular Mechasnisms Unit | Tarantino E.,Fondazione Istituto Nazionale Dei Tumori | Sensi M.,Human Tumors Immunobiology Unit | And 9 more authors.
Endocrine-Related Cancer

Thyroid carcinomas derived from follicular cells comprise papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, poorly differentiated thyroid carcinoma (PDTC) and undifferentiated anaplastic thyroid carcinoma (ATC). PTC, the most frequent thyroid carcinoma histotype, is associated with gene rearrangements that generate RET/PTC and TRK oncogenes and with BRAF-V600E and RAS gene mutations. These last two genetic lesions are also present in a fraction of PDTCs. The ERK1/2 pathway, downstream of the known oncogenes activated in PTC, has a central role in thyroid carcinogenesis. In this study, we demonstrate that the BRAF-V600E, RET/PTC, and TRK oncogenes upregulate the ERK1/2 pathway's attenuator cytoplasmic dual-phase phosphatase DUSP6/MKP3 in thyroid cells. We also show DUSP6 overexpression at the mRNA and protein levels in all the analysed PTC cell lines. Furthermore, DUSP6 mRNA was significantly higher in PTC and PDTC in comparison with normal thyroid tissues both in expression profile datasets and in patients' surgical samples analysed by real-time RT-PCR. Immunohistochemical and western blot analyses showed that DUSP6 was also overexpressed at the protein level in most PTC and PDTC surgical samples tested, but not in ATC, and revealed a positive correlation trend with ERK1/2 pathway activation. Finally, DUSP6 silencing reduced the neoplastic properties of four PTC cell lines, thus suggesting that DUSP6 may have a pro-tumorigenic role in thyroid carcinogenesis. © 2013 Society for Endocrinology. Source

Discover hidden collaborations