Madrid, Spain
Madrid, Spain

Time filter

Source Type

Ortega-Molina A.,Tumor Suppression Group | Efeyan A.,Tumor Suppression Group | Lopez-Guadamillas E.,Tumor Suppression Group | Munoz-Martin M.,Tumor Suppression Group | And 12 more authors.
Cell Metabolism | Year: 2012

Aging in worms and flies is regulated by the PI3K/Akt/Foxo pathway. Here we extend this paradigm to mammals. Pten tg mice carrying additional genomic copies of Pten are protected from cancer and present a significant extension of life span that is independent of their lower cancer incidence. Interestingly, Pten tg mice have an increased energy expenditure and protection from metabolic pathologies. The brown adipose tissue (BAT) of Pten tg mice is hyperactive and presents high levels of the uncoupling protein Ucp1, which we show is a target of Foxo1. Importantly, a synthetic PI3K inhibitor also increases energy expenditure and hyperactivates the BAT in mice. These effects can be recapitulated in isolated brown adipocytes and, moreover, implants of Pten tg fibroblasts programmed with Prdm16 and Cebpβ form subcutaneous brown adipose pads more efficiently than wild-type fibroblasts. These observations uncover a role of Pten in promoting energy expenditure, thus decreasing nutrient storage and its associated damage. © 2012 Elsevier Inc.


PubMed | GEICAM, Hospital Clinico Universitario Virgen Of La Victoria, Hospital General Of Albacete, Hospital Universitario La Paz and 14 more.
Type: | Journal: Clinical cancer research : an official journal of the American Association for Cancer Research | Year: 2016

We previously detected promising efficacy of neoadjuvant nintedanib (a multityrosine kinase inhibitor, TKI) in early HER2-negative breast cancer. In a preclinical study, we monitored stromal hypoxia with Patients were randomized to a 14-day WoO of nintedanib preceded and followed by an 18F-FMISO-PET, followed by nintedanib plus weekly paclitaxel (Arm A) or an 18F-FMISO-PET followed by weekly paclitaxel (Arm B) before surgery. The endpoint was residual cancer burden (RCB). The objective was to detect the patients with no response (RCB-III) on the basis of the baseline or evolutive 18F-FMISO-PET values/changes.One-hundred and thirty HER2-negative patients were randomized. Seventeen (27.9%), 34 (55.7%), and 8 (13.1%) patients had an RCB of III, II, and I/0, respectively, in Arm A. In this arm, baseline hypoxic tumors had a 4.4-fold higher chance of experiencing RCB = 3 (P = 0.036) compared with baseline normoxic tumors. Nintedanib WoO induced tumor reoxygenation in 24.5% of the patients; those not reoxygenating showed a trend toward higher chance of experiencing RCB-III (6.4-fold; P = 0.09). In Arm B, 18F-FMISO-PET lacked predictive/prognostic value.Baseline hypoxic tumors (measured with 18F-FMISO-PET) do not benefit from neoadjuvant nintedanib. Clin Cancer Res; 1-10. 2016 AACR.


PubMed | Complutense University of Madrid, Instituto Of Investigacion Sanitaria Iis Fundacion Jimenez Diaz, ActiveLife Scientific, Erasmus University Rotterdam and 2 more.
Type: Journal Article | Journal: The journals of gerontology. Series A, Biological sciences and medical sciences | Year: 2016

In the present study, the possibility that a diabetic (DM) status might worsen age-related bone deterioration was explored in mice. Male CD-1 mice aged 2 (young control group) or 16 months, nondiabetic or made diabetic by streptozotocin injections, were used. DM induced a decrease in bone volume, trabecular number, and eroded surface, and in mineral apposition and bone formation rates, but an increased trabecular separation, in L1-L3 vertebrae of aged mice. Three-point bending and reference point indentation tests showed slight changes pointing to increased frailty and brittleness in the mouse tibia of diabetic old mice. DM was related to a decreased expression of both vascular endothelial growth factor and its receptor 2, which paralleled that of femoral vasculature, and increased expression of the pro-adipogenic gene peroxisome proliferator-activated receptor and adipocyte number, without affecting -catenin pathway in old mouse bone. Concomitant DM in old mice failed to affect total glutathione levels or activity of main anti-oxidative stress enzymes, although xanthine oxidase was slightly increased, in the bone marrow, but increased the senescence marker caveolin-1 gene. In conclusion, DM worsens bone alterations of aged mice, related to decreased bone turnover and bone vasculature and increased senescence, independently of the anti-oxidative stress machinery.


Povedano J.M.,Telomeres and Telomerase Group | Martinez P.,Telomeres and Telomerase Group | Flores J.M.,Complutense University of Madrid | Mulero F.,Molecular Imaging Unit | Blasco M.A.,Telomeres and Telomerase Group
Cell Reports | Year: 2015

Idiopathic pulmonary fibrosis (IPF) is a degenerative disease of the lungs with an average survival post-diagnosis of 2-3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice) or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells). We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments. © 2015 The Authors.


Maraver A.,Tumor Suppression Group | Fernandez-Marcos P.,Tumor Suppression Group | Herranz D.,Tumor Suppression Group | Herranz D.,Columbia University | And 11 more authors.
Cancer Cell | Year: 2012

Here, we have investigated the role of the Notch pathway in the generation and maintenance of Kras G12V-driven non-small cell lung carcinomas (NSCLCs). We demonstrate by genetic means that γ-secretase and RBPJ are essential for the formation of NSCLCs. Of importance, pharmacologic treatment of mice carrying autochthonous NSCLCs with a γ-secretase inhibitor (GSI) blocks cancer growth. Treated carcinomas present reduced HES1 levels and reduced phosphorylated ERK without changes in phosphorylated MEK. Mechanistically, we show that HES1 directly binds to and represses the promoter of DUSP1, encoding a dual phosphatase that is active against phospho-ERK. Accordingly, GSI treatment upregulates DUSP1 and decreases phospho-ERK. These data provide proof of the in vivo therapeutic potential of GSIs in primary NSCLCs. © 2012 Elsevier Inc.


Bar C.,Telomeres and Telomerase Group | De Jesus B.B.,Telomeres and Telomerase Group | Serrano R.,Telomeres and Telomerase Group | Tejera A.,Telomeres and Telomerase Group | And 12 more authors.
Nature Communications | Year: 2014

Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI. © 2014 Macmillan Publishers Limited. All rights reserved.


Herranz D.,Tumor Suppression Group | Munoz-Martin M.,Tumor Suppression Group | Canamero M.,Comparative Pathology Unit | Mulero F.,Molecular Imaging Unit | And 3 more authors.
Nature Communications | Year: 2010

Genetic overexpression of protein deacetylase Sir2 increases longevity in a variety of lower organisms, and this has prompted interest in the effects of its closest mammalian homologue, Sirt1, on ageing and cancer. We have generated transgenic mice moderately overexpressing Sirt1 under its own regulatory elements (Sirt1-tg). Old Sirt1-tg mice present lower levels of DNA damage, decreased expression of the ageing-associated gene p16Ink4a, a better general health and fewer spontaneous carcinomas and sarcomas. These effects, however, were not sufficiently potent to affect longevity. To further extend these observations, we developed a metabolic syndrome-associated liver cancer model in which wild-type mice develop multiple carcinomas. Sirt1-tg mice show a reduced susceptibility to liver cancer and exhibit improved hepatic protection from both DNA damage and metabolic damage. Together, these results provide direct proof of the anti-ageing activity of Sirt1 in mammals and of its tumour suppression activity in ageing- and metabolic syndrome-associated cancer.


PubMed | Molecular Imaging Unit, Bioinformatics Unit, Northwestern University, Proteomics Unit and Breast Cancer Clinical Research Unit
Type: Journal Article | Journal: Cell reports | Year: 2016

Epithelial malignancies are effectively treated by antiangiogenics; however, acquired resistance is a major problem in cancer therapeutics. Epithelial tumors commonly have mutations in the MAPK/Pi3K-AKT pathways, which leads to high-rate aerobic glycolysis. Here, we show how multikinase inhibitor antiangiogenics (TKIs) induce hypoxia correction in spontaneous breast and lung tumor models. When this happens, the tumors downregulate glycolysis and switch to long-term reliance on mitochondrial respiration. A transcriptomic, metabolomic, and phosphoproteomic study revealed that this metabolic switch is mediated by downregulation of HIF1 and AKT and upregulation of AMPK, allowing uptake and degradation of fatty acids and ketone bodies. The switch renders mitochondrial respiration necessary for tumor survival. Agents like phenformin or ME344 induce synergistic tumor control when combined with TKIs, leading to metabolic synthetic lethality. Our study uncovers mechanistic insights in the process of tumor resistance to TKIs and may have clinical applicability.


PubMed | Animal Facility Unit, Molecular Imaging Unit and Charles River Laboratories
Type: Comparative Study | Journal: Laboratory animals | Year: 2016

Directive 2010/63/EU on the protection of animals used for scientific purposes requires that the killing of mammal foetuses during the last third of their gestational period should be accomplished through effective and humane methods. The fact that murine foetuses are resistant to hypoxia-mediated euthanasia renders the current euthanasia methods ineffective or humane for the foetuses when these methods are applied to pregnant female mice. We have assessed the time to death of foetuses after performing either indirect (dam euthanasia) or direct (via intraplacental injection--a new approach to euthanasia) euthanasia methods in order to determine a euthanasia method that is appropriate, ethical and efficient for the killing of mouse foetuses. The respective times to death of foetuses after performing the three most commonly used euthanasia methods (namely cervical dislocation, CO2inhalation and intraperitoneal sodium pentobarbital administration) were recorded. Absence of foetal heartbeat was monitored via ultrasound. We consider that the most effective and humane method of foetal euthanasia was the one able to achieve foetal death within the shortest possible period of time. Among the indirect euthanasia methods assessed, the administration of a sodium pentobarbital overdose to pregnant female mice was found to be the fastest for foetuses, with an average post-treatment foetal death of approximately 29.8min. As for the direct euthanasia method assessed, foetal time to death after intraplacental injection of sodium pentobarbital was approximately 14min. Significant differences among the different mouse strains employed were found. Based on the results obtained in our study, we consider that the administration of a sodium pentobarbital overdose by intraplacental injection to be an effective euthanasia method for murine foetuses.


PubMed | Molecular Imaging Unit
Type: Journal Article | Journal: Journal of labelled compounds & radiopharmaceuticals | Year: 2014

Boron clusters, and especially dicarba-closo-dodecaboranes, can be used as hydrophobic pharmacophores in the design of new drugs and radiotracers because of their hydrophobic character, spherical structure, and excellent chemical and photochemical stability. In the present paper, the synthesis and in vivo evaluation of (11) C-labeled (1,7-dicarba-closo-dodecaboran-1-yl)-N-{[(2S)-1-ethylpyrrolidin-2-yl]methyl}amide, an analog of the D2 receptor ligand [(11) C]raclopride, is described. The radiosynthesis was approached by reaction of the demethylated precursor with [(11) C]CH3 I in basic media; moderate radiochemical yields (18.22.8%, decay corrected), and excellent radiochemical purities (>98%) were obtained in overall synthesis time of ~50min. In vivo assays showed a biodistribution pattern with significant uptake in liver, kidneys and lungs at short times (t=4min) after administration and increasing accumulation in bladder at longer times (t14.5min). Although brain positron emission tomography scans showed good blood brain barrier penetration, the high unspecific uptake observed in different brain regions impedes its applicability as D2 receptor ligand.

Loading Molecular Imaging Unit collaborators
Loading Molecular Imaging Unit collaborators