Time filter

Source Type

Lichte P.,RWTH Aachen | Kobbe P.,RWTH Aachen | Pfeifer R.,RWTH Aachen | Campbell G.C.,Molecular Imaging North Competence Center | And 9 more authors.
Mediators of Inflammation | Year: 2015

Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP) of 35 mmHg for 90 minutes). Serum cytokines (IL-6, KC, MCP-1, and TNF-α) were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μ CT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing. © 2015 Philipp Lichte et al.

Campbell G.M.,University of Kiel | Campbell G.M.,Molecular Imaging North Competence Center | Tiwari S.,University of Kiel | Tiwari S.,Molecular Imaging North Competence Center | And 5 more authors.
Calcified Tissue International | Year: 2014

Micro-computed tomography (micro-CT) is a widely used technique to track bone structural and mineral changes in small animals in vivo. Precise definition of volumes of interest (VOIs) in follow-up scans is required to accurately quantify these changes. To improve precision, VOIs can be transferred from baseline images onto follow-ups using image registration. We studied the performance of a registration procedure applied to in vivo data sets of anabolic and osteoporotic bone changes in mice. Micro-CT image data from two separate CD1 mouse data sets were studied. The first included a group treated with parathyroid hormone (PTH) and control and the second, an ovariectomy (OVX) group and control. Micro-CT was performed once per week for 4 weeks at the proximal tibia starting at treatment onset (PTH data set) or after surgery (OVX data set). A series consisting entirely of user-defined VOIs and a registered series where VOIs defined at baseline were transferred to follow-ups were created. Standard bone structural and mineral measurements were calculated. Image registration resulted in a 13-56 % reduction in precision error. Significant effects of registration to detect PTH-induced changes in BV/TV and trabecular BMD were observed. When changes were very pronounced or small, the qualitative improvement observed for the registered data set did not reach statistical significance. This study documents an increase in long-term precision of micro-CT measurements with image registration. Sensitivity to detect changes was improved but not uniform for all parameters. Future study of this technique on images with a smaller voxel size (<19 μm) may capture the effect in greater detail, in particular for trabecular thickness, where changes may be too small to be observed with the voxel size used here. Our results document the value of registration and indicate that the magnitude of improvement depends on the model and treatment chosen. © 2013 Springer Science+Business Media.

Discover hidden collaborations