Los Angeles, CA, United States
Los Angeles, CA, United States

Time filter

Source Type

Andersson A.,University of California at Los Angeles | Srivastava M.K.,University of California at Los Angeles | Harris-White M.,University of California at Los Angeles | Harris-White M.,Molecular Gene Medicine Laboratory | And 14 more authors.
Clinical Cancer Research | Year: 2011

Purpose: We evaluated the utility of chimeric gc homeostatic cytokine, IL-7/IL-7Rα-Fc, to restore host APC (antigen presenting cell) and T cell activities in lung cancer. Experimental Design: Utilizing murine lung cancer models we determined the antitumor efficacy of IL-7/IL-7Rα-Fc. APC, T cell, cytokine analyses, neutralization of CXCL9, CXCL10, and IFNg were carried out to evaluate the mechanistic differences in the antitumor activity of IL-7/IL-7Rα-Fc in comparison to controls. Results: IL-7/IL-7Rα-Fc administration inhibited tumor growth and increased survival in lung cancer. Accompanying the tumor growth inhibition were increases in APC and T cell activities. In comparison to controls, IL-7/IL-7Rα-Fc treatment of tumor bearing mice led to increased: (i) levels of CXCL9, CXCL10, IFNg, IL-12 but reduced IL-10 and TGFb, (ii) tumor macrophage infiltrates characteristic of M1 phenotype with increased IL-12, iNOS but reduced IL-10 and arginase, (iii) frequencies of T and NK cells, (iv) T cell activation markers CXCR3, CD69 and CD127 low, (v) effector memory T cells, and (vi) T cell cytolytic activity against parental tumor cells. IL-7/IL-7Rα-Fc treatment abrogated the tumor induced reduction in splenic functional APC activity to T responder cells. The CXCR3 ligands played an important role in IL-7/IL-7Rα-Fc- mediated antitumor activity. Neutralization of CXCL9, CXCL10, or IFNg reduced CXCR3 expressing activated T cells infiltrating the tumor and abrogated IL-7/IL-7Rα-Fc-mediated tumor growth inhibition. Conclusions: Our findings show that IL-7/IL-7Rα-Fc promotes afferent and efferent antitumor responses in lung cancer. ©2011 AACR.


Sharma S.,University of California at Los Angeles | Sharma S.,Molecular Gene Medicine Laboratory | Srivastava M.K.,University of California at Los Angeles | Srivastava M.K.,Molecular Gene Medicine Laboratory | And 5 more authors.
Expert Opinion on Biological Therapy | Year: 2011

Lung cancer is the most common cause of cancer mortality worldwide for both men and women, causing approximately 1.2 million deaths per year. With the existing therapeutic efforts, the long-term survival for lung cancer patients remains low with only 15% surviving for 5 years following diagnosis. Therefore, new therapeutic strategies are needed. One such approach is the development of immune therapy for lung cancer. Immune approaches for lung cancer remain attractive because although surgery, chemotherapy and radiotherapy alone or in combination have response rates in all histological types of lung cancer, relapse is frequent. Immunologic targeting of lung cancer has the potential for nontoxic and specific therapy. Strategies that harness the immune system to react against tumors can be integrated with existing forms of therapy for optimal responses toward this devastating disease. © 2011 Informa UK, Ltd.


Kachroo P.,Lung Cancer Research Program | Kachroo P.,University of California at Los Angeles | Lee M.-H.,Lung Cancer Research Program | Lee M.-H.,University of California at Los Angeles | And 15 more authors.
Journal of Experimental and Clinical Cancer Research | Year: 2013

Background: Interleukin-27 signaling is mediated by the JAK-STAT pathway via activation of STAT1 and STAT3, which have tumor suppressive and oncogenic activities, respectively. Epithelial-mesenchymal transition (EMT) and angiogenesis are key processes in carcinogenesis. Although IL-27 has been shown to have potent anti-tumor activity in various cancer models, the role of IL-27 in EMT and angiogenesis is poorly understood. In this study, we investigated the role of IL-27 in regulating EMT and angiogenesis through modulation of the STAT pathways in human non-small cell lung carcinoma (NSCLC) cells. Methods. STAT activation following IL-27 exposure was measured in human NSCLC cell lines. Expression of epithelial (E-cadherin, γ-catenin) and mesenchymal (N-cadherin, vimentin) markers were assessed by Western blot analysis. Production of pro-angiogenic factors (VEGF, IL-8/CXCL8, CXCL5) were examined by ELISA. Cell motility was examined by an in vitro scratch and transwell migration assays. Selective inhibitors of STAT1 (STAT1 siRNAs) and STAT3 (Stattic) were used to determine whether both STAT1 and STAT3 are required for IL-27 mediated inhibition of EMT and secretion of angiogenic factors. Results: Our results demonstrate that IL-27 stimulation in NSCLC resulted in 1) STAT1 and STAT3 activation in a JAK-dependent manner, 2) development of epithelial phenotypes, including a decrease in the expression of a transcriptional repressor for E-cadherin (SNAIL), and mesenchymal marker (vimentin) with a reciprocal increase in the expression of epithelial markers, 3) inhibition of cell migration, and 4) reduced production of pro-angiogenic factors. STAT1 inhibition in IL-27-treated cells reversed the IL-27 effect with resultant increased expression of Snail, vimentin and the pro-angiogenic factors. The inhibition of STAT3 activation had no effect on the development of the epithelial phenotype. Conclusion: IL-27 induces mesenchymal to epithelial transition and inhibits the production of pro-angiogenic factors in a STAT1-dominant pathway. These findings highlight the importance of STAT1 in repressing lung carcinogenesis and describe a new anti-tumor mechanism of IL-27. © 2013 Kachroo et al.; licensee BioMed Central Ltd.


Srivastava M.K.,University of California at Los Angeles | Srivastava M.K.,Molecular Gene Medicine Laboratory | Zhu L.,University of California at Los Angeles | Zhu L.,Molecular Gene Medicine Laboratory | And 11 more authors.
PLoS ONE | Year: 2012

Background: Myeloid derived suppressor cells (MDSC) are important regulators of immune responses. We evaluated the mechanistic role of MDSC depletion on antigen presenting cell (APC), NK, T cell activities and therapeutic vaccination responses in murine models of lung cancer. Principal Findings: Individual antibody mediated depletion of MDSC (anti-Gr1 or anti-Ly6G) enhanced the antitumor activity against lung cancer. In comparison to controls, MDSC depletion enhanced the APC activity and increased the frequency and activity of the NK and T cell effectors in the tumor. Compared to controls, the anti-Gr1 or anti-Ly6G treatment led to increased: (i) CD8 T cells, (ii) NK cells, (iii) CD8 T or NK intracytoplasmic expression of IFNγ, perforin and granzyme (iv) CD3 T cells expressing the activation marker CD107a and CXCR3, (v) reduced CD8 T cell IL-10 production in the tumors (vi) reduced tumor angiogenic (VEGF, CXCL2, CXCL5, and Angiopoietin1&2) but enhanced anti-angiogenic (CXCL9 and CXCL10) expression and (vii) reduced tumor staining of endothelial marker Meca 32. Immunocytochemistry of tumor sections showed reduced Gr1 expressing cells with increased CD3 T cell infiltrates in the anti-Gr1 or anti-Ly6G groups. MDSC depletion led to a marked inhibition in tumor growth, enhanced tumor cell apoptosis and reduced migration of the tumors from the primary site to the lung compared to controls. Therapeutic vaccination responses were enhanced in vivo following MDSC depletion with 50% of treated mice completely eradicating established tumors. Treated mice that rejected their primary tumors acquired immunological memory against a secondary tumor challenge. The remaining 50% of mice in this group had 20 fold reductions in tumor burden compared to controls. Significance: Our data demonstrate that targeting MDSC can improve antitumor immune responses suggesting a broad applicability of combined immune based approaches against cancer. This multifaceted approach may prove useful against tumors where MDSC play a role in tumor immune evasion.


Herrmann I.,Micromet AG | Baeuerle P.A.,Micromet AG | Baeuerle P.A.,Micromet Inc | Friedrich M.,Micromet AG | And 9 more authors.
PLoS ONE | Year: 2010

With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs) are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof. © 2010 Herrmann et al.


Sharma S.,University of California at Los Angeles | Sharma S.,Molecular Gene Medicine Laboratory | Zhu L.,University of California at Los Angeles | Zhu L.,Molecular Gene Medicine Laboratory | And 8 more authors.
Expert Opinion on Therapeutic Targets | Year: 2013

Although tumor growth leads to inflammatory responses, the immune system develops tolerance to cancer. One way to break host tolerance to tumors is to activate key immune effector activities. Toward this end, various adjuvants are under investigation in an effort to harness the immune system to overcome tolerance to tumor-associated self-antigens. There is enthusiasm for the use of specific ligands for toll-like receptor 3 (TLR3) that play a key role in the innate immune system. TLR3 agonists serve as immune adjuvants because they potently induce innate immune responses by activating dendritic cell (DC) maturation and inflammatory cytokine secretion. These activities facilitate the bridge between the innate and adaptive immune systems promoting the expansion of cytotoxic T lymphocytes (CTL) that destroy cancer cells. TLR3 agonists either alone or in combination with tumor antigens have shown success in terms of enhancing immune responses and eliciting antitumor activity in preclinical models. However, TLR3 agonists can also impact regulatory cells that dampen immune responses. Thus, immune strategies that utilize TLR3 agonists should consider the relative induction of suppressive as well as beneficial antitumor immune activities. Herein, we summarize the TLR3 agonists that will hopefully come to clinical fruition. © Informa UK, Ltd.


Zhu L.X.,University of California at Los Angeles | Zhu L.X.,Molecular Gene Medicine Laboratory | Davoodi M.,Molecular Gene Medicine Laboratory | Srivastava M.K.,University of California at Los Angeles | And 13 more authors.
OncoImmunology | Year: 2015

An immune tolerant tumor microenvironment promotes immune evasion of lung cancer. Agents that antagonize immune tolerance will thus aid the fight against this devastating disease. Members of the tumor necrosis factor receptor (TNFR) family modulate the magnitude, duration and phenotype of immune responsiveness to antigens. Among these, GITR expressed on immune cells functions as a key regulator in inflammatory and immune responses. Here, we evaluate the GITR agonistic antibody (DTA-1) as a mono-therapy and in combination with therapeutic vaccination in murine lung cancer models. We found that DTA-1 treatment of tumor-bearing mice increased: (i) the frequency and activation of intratumoral natural killer (NK) cells and T lymphocytes, (ii) the antigen presenting cell (APC) activity in the tumor, and (iii) systemic T-cell specific tumor cell cytolysis. DTA-1 treatment enhanced tumor cell apoptosis as quantified by cleaved caspase-3 staining in the tumors. DTA-1 treatment increased expression of IFNγ, TNFα and IL-12 but reduced IL-10 levels in tumors. Furthermore, increased anti-angiogenic chemokines corresponding with decreased pro-angiogenic chemokine levels correlated with reduced expression of the endothelial cell marker Meca 32 in the tumors of DTA-1 treated mice. In accordance, there was reduced tumor growth (8-fold by weight) in the DTA-1 treatment group. NK cell depletion markedly inhibited the antitumor response elicited by DTA-1. DTA-1 combined with therapeutic vaccination caused tumor rejection in 38% of mice and a 20-fold reduction in tumor burden in the remaining mice relative to control. Mice that rejected tumors following therapy developed immunological memory against subsequent re-challenge. Our data demonstrates GITR agonist antibody activated NK cell and T lymphocyte activity, and enhanced therapeutic vaccination responses against lung cancer. © 2015 Taylor & Francis Group, LLC.


PubMed | Seoul National University, University of Zürich, University of California at Los Angeles, City of Hope Comprehensive Cancer Center and 3 more.
Type: Journal Article | Journal: International trends in immunity | Year: 2014

Lung cancer remains a challenging health problem with more than 1.1 million deaths worldwide annually. With current therapy, the long term survival for the majority of lung cancer patients remains low, thus new therapeutic strategies are needed. One such strategy would be to develop immune therapy for lung cancer. Immune approaches remain attractive because although surgery, chemotherapy, and radiotherapy alone or in combination produce response rates in all histological types of lung cancer, relapse is frequent. Strategies that harness the immune system to react against tumors can be integrated with existing forms of therapy for optimal responses toward this devastating disease. Both antigen presenting cell (APC) and T cell activities are reduced in the lung tumor microenvironment. In this review we discuss our experience with efforts to restore host APC and T cell activities in the lung cancer microenvironment by intratumoral administration of dendritic cells (DC) expressing the CCR7 receptor ligand CCL21 (secondary lymphoid chemokine, SLC). Based on the results demonstrating that CCL21 is an effective anti cancer agent in the pre-clinical lung tumor model systems, a phase I clinical trial was initiated using intratumoral injection of CCL21 gene modified autologous DC in lung cancer. Results from the trial thus far indicate tolerability, immune enhancement and tumor shrinkage via this approach.

Loading Molecular Gene Medicine Laboratory collaborators
Loading Molecular Gene Medicine Laboratory collaborators