Entity

Time filter

Source Type


Anagnostopoulos A.K.,Academy of Athens | Anagnostopoulos A.K.,National and Kapodistrian University of Athens | Dimas K.S.,Academy of Athens | Papathanassiou C.,National and Kapodistrian University of Athens | And 8 more authors.
Journal of Proteome Research | Year: 2011

Childhood pilocytic astrocytoma is the most frequent brain tumor affecting children. Proteomics analysis is currently considered a powerful tool for global evaluation of protein expression and has been widely applied in the field of cancer research. In the present study, a series of proteomics, genomics, and bioinformatics approaches were employed to identify, classify and characterize the proteome content of low-grade brain tumors as it appears in early childhood. Through bioinformatics database construction, protein profiles generated from pathological tissue samples were compared against profiles of normal brain tissues. Additionally, experiments of comparative genomic hybridization arrays were employed to monitor for genetic aberrations and sustain the interpretation and evaluation of the proteomic data. The current study confirms the dominance of MAPK pathway for the childhood pilocytic astrocytoma occurrence and novel findings regarding the ERK-2 expression are reported. © 2011 American Chemical Society. Source


Anagnostopoulos A.K.,Biomedical Research Foundation of the Academy of Athens | Anagnostopoulos A.K.,National and Kapodistrian University of Athens | Papathanassiou C.,National and Kapodistrian University of Athens | Karamolegou K.,National and Kapodistrian University of Athens | And 7 more authors.
Journal of Proteome Research | Year: 2015

CNS tumors are the leading cause of cancer-related death in children. Medulloblastoma is the commonest pediatric CNS malignancy, wherein, despite multimodal therapy with surgery, radiation, and chemotherapy, 5 year survival rates merely approach 60%. Until present, gene expression and cytogenetic studies have produced contradicting findings regarding the molecular background of the specific disease. Through integration of genomics, bioinformatics, and proteomics, the current study aims to shed light at the proteomic-related molecular events responsible for MBL pathophysiology, as well as to provide molecular/protein/pathway answers concerning tumor-onset. Experiments were performed on tissues collected at surgery. With 17p loss being the commonest chromosomal aberrance observed in our sample set, array-CGH were employed to first distinguish for 17p-positive cases. 2-DE coupled to mass spectrometry identification exposed the MBL-specific protein profile. Protein profiles of malignant tissues were compared against profiles of normal cerebellar tissues, and quantitative protein differences were determined. Bioinformatics, functional and database analyses, characterization, and subnetwork profiling generated information on MBL protein interactions. Key molecules of the PI3K/mTOR signaling network were identified via the techniques applied herein. Among the findings IGF2, PI3K, Rictor, MAPKAP1, S6K1, 4EBP1, and ELF4A, as part of the IGF network (implicating PI3K/mTOR), were founded to be deregulated. © 2015 American Chemical Society. Source

Discover hidden collaborations